

蔡克銓 / 許仲翔 李昭賢 /吳安傑/ 金步遠

含鋼板阻尼器或挫屈束制支撐構架之 耐震設計與分析技術研討會 國家地震工程研究中心/國立台灣大學 2016/11/03

利用鋼板阻尼器成為耐震間柱

Stub Column

Steel Panel Damper 鋼板阻尼器 (SPD)

SPD之加工方式

 $t_{w,IC} \leq t_{w,EJ}$

兩月相同的翼板兩種厚度的腹板再加上加勁板

試體規劃-加勁板的配置

End-Stiffeners : Separating the core

Buckling restraining Stiffeners

5 Longitudinal SPD-5L1T 1 Transverse

■ SPD 試體設計 ■試驗配置 SPD ■試驗結果 ■試驗與分析結果比較 ■ SPD模型簡化方法 ■SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■ 6-Story SPD-MRF分析結果 ■結論

SPD試體尺寸

■ SPD 試體設計 ■試驗配置 SPD ■試驗結果 ■試驗與分析結果比較 ■ SPD模型簡化方法 SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■6-Story SPD-MRF分析結果 結論

SPD-2L1T

H600x250xt_wx30(A992)

H600x250xt_wx30(A992)

Demand to Capacity Ratio = DCR

$DCR = \frac{Demand}{Capacity}$

$$\sigma = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2 + 3\sigma_{12}^2} \le \phi \sigma_y \qquad \phi = 0.9$$

	Web Edge	Web Center	Flange Edge
$\sigma(tf/cm^2)$	3.26	2.15	3.27
$\phi \sigma_y(tf/cm^2)$	3.15	3.15	3.15
DCRs	1.03	0.68	1.03

$$R_{w} = \frac{b}{t_{w}} \sqrt{\frac{12(1 - v^{2})\tau_{y}}{k_{e}\pi^{2}E}} \le 0.2$$

Designed by Abaqus

Capacity of Stiffened Steel Shear Panels as a Structural Control Damper H.B. Ge, K. Kaneko and T. Usami (2008) b : short side of separated web t_w : thickness of core web τ_v : yielding shear stress of core web

 $K_{e} \text{ range from 4 to 6}$ $K_{e} = 3.96 + 2.24 \left(\frac{b}{a}\right)^{2}$ $\int_{a}^{\tau} 0 \le \frac{b}{a} \le 1$ a : longside b : shortside

 τ

Capacity of Stiffened Steel Shear Panels as a Structural Control Damper H.B. Ge, K. Kaneko and T. Usami (2008)

 n_L : number of longitudinal stiffeners

$$\alpha = \frac{b}{a} \le 1.0$$

1.05

SPD試體設計 ■試驗配置 SPD ■試驗結果 ■試驗與分析結果比較 ■ SPD模型簡化方法 SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■6-Story SPD-MRF分析結果 結論

SPD試體設計 ■試驗配置 SPD ■試驗結果 ■試驗與分析結果比較 ■ SPD模型簡化方法 SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■6-Story SPD-MRF分析結果 結論

SPD-2L1T vs. 2L0T

■ SPD 試體設計 ■試驗配置 SPD 試驗結果 ■試驗與分析結果比較 SPD模型簡化方法 SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■6-Story SPD-MRF分析結果 結論

試體SPD-2L1T - Abaqus模型

Shell Elements Mesh Size: 25mm Number of Elements: 11033

Abaqus

Abaqus可準確模擬試驗結果

Constrain out of plane deformations

PISA3D程式庫 - 結構材料

PISA3D中SPD模型簡化方法。

PISA3D可供模擬試驗結果

NCR

■ SPD 試體設計 ■試驗配置 SPD ■試驗結果 ■試驗與分析結果比較 ■ SPD模型簡化方法 SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■6-Story SPD-MRF分析結果

PISA3D中SPD模型簡化方法。

Effective Stiffness
 Yielding Force

$$A_{vy, \rm Eff} = Q_{vy} A_{vy, \rm IC}$$

One ElementThree Elements

 $A_{vy,Eff}$: shear area of y axis Q_{vy} : effective coefficient of shear area

A _{axial,Eff}	A _{vy,Eff}	$A_{vz,Eff}$	$J_{,Eff}$	$\mathbf{I}_{y,Eff}$	$\mathbf{I}_{z,Eff}$
Q _A	Q _{vy}	Q _{vz}	QJ	Q _{My}	Q _{Mz}

等效斷面

$$\begin{array}{c|c} & & & & \\ & & & \\ &$$

$$A_{vy,Eff} = Q_{vy}A_{vy,IC}$$
$$Q_{vy} = \frac{\beta_{vy}}{1 + \alpha(\beta_{vy} - 1)}$$
$$\beta_{vy} = \frac{A_{vy,EJ}}{A_{vy,IC}}$$

$$A_{\text{axial, Eff}} = Q_A A_{\text{axial, IC}}$$
$$Q_A = \frac{\beta_A}{1 + \alpha(\beta_A - 1)}$$
$$\beta_A = \frac{A_{\text{axial, EJ}}}{A_{\text{axial, IC}}}$$

$$J_{\rm Eff} = Q_J J_{IC}$$
$$Q_J = \frac{\beta_J}{1 + \alpha(\beta_J - 1)}$$
$$\beta_J = \frac{J_{\rm EJ}}{J_{IC}}$$

ţΥ

Z+--

$$\Delta_{Moment} = 2\int \frac{Mm}{EI_{EJ}} dx + \int \frac{Mm}{EI_{IC}} dx = \int \frac{Mm}{EI_{Eff}} dx$$

Shear Yielding $V_{y} = A_{vy,IC} \ \mathbf{0.6}F_{y,core} = A_{vy,eff} \ \mathbf{0.6}F_{y,eff}$ $F_{y,Eff} = \frac{A_{vy,IC}}{A_{vy,eff}} F_{y} = \frac{1}{Q_{vy}} F_{y,core}$

核心段相對長度對有效勁度之效應

- 縱軸為彈性勁度介於0.2至0.6與全高皆為核心段
 時(=1)之比值,橫軸為核心段相對長度
- 隨著核心段相對長度縮短與連接段斷面剛度上升 ,SPD彈性勁度可增加150%
- 可用增加連接段長度與斷面剛度來有效增加SPD
 之勁度而保持強度不變
 3 Stiffness Ratio

核心段相對長度與核心段變形關係 左圖為小變形時核心段變形與整體側位移角 關係,右圖則為大變形

在大變形下顯示γ與θ比例約為1/α,可假設 SPD變形集中在核心段而忽略連接段之變形

核心段相對長度對整體應變硬化之效應
縱軸為降伏後與彈性勁度比值,橫軸為核心段相對長度
SHR_{IC}為0.01時,整體SPD降伏後勁度比隨著核心段相對長度之減短從0.02上升至0.05

● SHR_{IC}為0.03時,整體SPD降伏後勁度比便可從0.07上升 至0.15 Stiffness Ratio SHR_{IC}=0.03 SHR_{ic}=0.01 1.25 0.646

Example in PISA3D

Stiffness between 1 & 3 Elements

3 element: hardening material 1 element: bilinear material

	PISA3D		
	3 Elements	1 Element	
Elastic Stiffness (kN/mm)	196	196	

Summary

■ 試驗結果證實SPD容量設計法可行,且 加勁單元能延緩挫屈。 ■ 不配置橫向加勁板, SPD-2L1T與SPD-2LOT的韌性容量相差不大。 ■ 由簡化單根模型推導的等效斷面,可方便 工程師使用。 ■ PISA3D與Abaqus模擬SPD之遲滯行為 具有不錯的準確性,且Abaqus能模擬挫 屈之時機。 SPD-MRF之耐震設計與分析

49

NCR

SPD試體設計 ■試驗配置 SPD ■試驗結果 ■試驗與分析結果比較 SPD模型簡化方法 ■SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■6-Story SPD-MRF分析結果 結論

SPDs are separated by beam

 $\frac{M_{pb}}{M_{p,SPD}} \ge 1.0$ *

 $\overline{M}_{pb} = \overline{Z}_{b}F_{y}$

 $M_{pb}^{*} = M_{pb} + V_{beam} \times \frac{d_{SPD}}{2}$

NCR

■ SPD 試體設計 ■試驗配置 SPD 試驗結果 ■試驗與分析結果比較 SPD模型簡化方法 SPD邊界梁設計方法 **SPD-MRF** ■6層樓SPD-MRF ■ 6-Story SPD-MRF分析結果

SPD	Core Section	Core Height	
6 Story	H600x250x4x16	1200	
4~5	H600x250x8x30	1800	
3	H900x250x6x22	900	
1~2	H900x250x7x30	1200	

Story	Corner Column	Column	Beam
6	B400x400x37	H500x300x25x40	H600x300x14x23
3~5	B450x450x37	H500x450x24x46	H800x300x10x22
1~2	B500x500x40	H600x400x25x50	H800x300x14x26

Unit: mm ₅₉

	Story	Thickness (mm)		Capacity	Demand	
7	Story	Doubler Plates	Web	(kN)	(kN)	
	6	3	14	1998	2099	0.95
	5	28	10	6148	6256	0.98
	4	40	10	8198	8232	1.00
	3	24	10	5502	5598	0.98
	2	_ 25	14	6374	6421	0.99
		31	14	7268	7409	0.98

Leaning Column

In order to reduce D.O.F. Simulate 10 leaning columns by 1.

Gravity Loads Use 1.2DL+0.5LL Load from tributary area Leaning column

Gravity Loads

Use 1.2DL+0.5LL Load from tributary area SPD-MRF System

PISA3D分析模型

BeamColumn Element Center line to center line 3 elements for each SPD

Joint Element & Rigid End Zones

 $\xi = 2\%$

層剪力 VS. 層間側位移 樓

71
Roof Drift at 1%

Abaqus Model

Black: Yield Area

PISA3D Model : Shear Hinge : Moment Hinge

Roof Drift at 2%

PISA3D Model

: Shear Hinge

: Moment Hinge

Mode Shapes

Scaled Spectrum

Maximum Responses

	SPD	240 EQs			Tests	
		Mean+SD				
		MCE	DBE	SLE	3PD-2L11	3PD-2LUI
	Core Rotation (%rad)	5.5	4.6	1.6	11.1	11.3
	Strain Hardening	1.3	1.3	0.8	1.5	1.5

2

CRE

■ 塑鉸發生之位置與順序證實SPD-MRF之邊界梁容量設計法可行。 ■ PISA3D與Abaqus對6層樓SPD-MRF之模擬結果相近,代表PISA3D 模型以旋轉彈簧與剛域模擬Panel Zone具準確性。 ■ 由240非線性動力分析結果與試驗比 較,證實SPD具有足夠的耐震容量。