Introduction of BRBs Using Welded End-slot Connections

#### 蔡克銓 Keh-Chyuan Tsai

National Taiwan University (NTU) National Center for Research on Earthquake Engineering (NCREE)

V//////

Using WES-BRBs for An Improved Seismic Resisting Performance of Buildings November 12-14, 2013, New Zealand

V//////

## The NARLabs consists of

National Chip Implementation Center (CIC) Instrument Technology Research Center (ÍTRC) National Science and Technology Center for Disaster Reduction (NCDR) National Center for High-performance Computing (NCHC) National Center for Research on Earthquake Engineering (NCREE) National Nano Device Laboratories (NDL) National Laboratory Animal Center (NLAC) National Space Organization (NSPO) Science & Technology Policy Research and Information Center (STPI) Taiwan Ocean Research Institute (TORI) Taiwan Typhoon and Flood Research Institute (TTFRI)

## **Evolution of the NCREE**



NSC project awarded to NTU in 1990 Merged into NARL as one of the **Centers in 2003 Major experimental facilities have** been running since 1997 when the laboratory was completed

### **Major facilities in NCREE**

Reaction Walls at NCREE (15m+15m+12m+12m=180 feet)

Strong Floor & Reaction Wall

**15**m



### **NCREE vision and mission**

Pre-quake preparation, emergency response and post-quake recovery Integrate research capacities of various EQ ENG research institutes in Taiwan

Promote INTL research collaboration on EQ hazard mitigation, and lead a key role in the world EQ ENG research community





## Basic LRFD Load Combinations

1.4D 1.2D + 1.6L + 0.5(Lr or S or R)1.2D + 1.6(Lr or S or R) + (0.5L or 0.8W)1.2D + 1.6W + 0.5L + 0.5(Lr or S or R)0.9D + 1.6W1.2D + 1.0E + 0.5L + 0.2S <sub>ר</sub> Load 0.9D + 1.0ECombinations Including E







### Brace response under cyclic loads









## **Connection failure under tension**









# Example of brace connection details



# NG design of connection details



## **Connection failure under compression**

![](_page_20_Picture_1.jpeg)

### **Questionable connection details ?**

![](_page_21_Picture_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Picture_0.jpeg)

# Reduce the length and the number of bolts Conveniently connected to the gusset plate

![](_page_25_Picture_2.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

Compact end connections enhance the stability Increases the core region length, reduces the brace strain and improves the BRB fatigue life

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

### **Design Procedures for BRBF**

![](_page_36_Picture_1.jpeg)

Fundamental BRBF period  $T = 0.070 h_n^{3/4}$  $h_n$  = building height (m) **Compute base shear, using** Response Modification Factor (R=8, ASCE7-10) Distribute the base shear vertically and estimate the brace axial load Select BRB core cross-sectional area  $A_c = \frac{P_{BRB}}{0.9F_v}$ **Construct analytical model using truss** elements for BRBs (Q<1.6)

![](_page_37_Picture_0.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_40_Picture_0.jpeg)

## **NTU Children's Hospital**

![](_page_41_Picture_1.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_44_Picture_0.jpeg)

### **Applications of DC-BRBs**

15 fabricators were licensed

![](_page_45_Picture_2.jpeg)

Adopted by more than 25 engineering consulting companies More than 12,000 BRBs have been installed in more than 60 buildings **Buildings' seismic performance is** improved cost-effectively

### **Challenges faced**

![](_page_46_Picture_1.jpeg)

Very large load carrying capacity **Application in fast track projects Reducing the steel material usage Reliable and cost-effective** fabrication procedures for unbonding mechanism **Economical on-site BRB-to-frame** connections More researches have been conducted.

### **Benefits of Lapped End Connections**

Shorten the connection length Enhance the out-plane stability Reduce the brace core strain Reduce the BRB axial stiffness Allow welded & bolted connections

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

## End-slot detail is very common

![](_page_48_Picture_1.jpeg)

![](_page_49_Figure_0.jpeg)

## Conclusions

![](_page_50_Picture_1.jpeg)

WES-BRB can achieve: **Compact and stable end connection Reduce the BRB core strain Reduce the BRB axial stiffness Economical on-site BRB-to-frame** connections Improve the building seismic performance **Cost-effective in BRBF construction** 

### **Today's presentations**

![](_page_51_Picture_1.jpeg)

**Experimental performance of welded** end-slot BRB (An-Chien Wu) Seismic design of WES-BRB and gusset connections (Pao-Chun Lin) A cloud service for seismic design of buckling restrained braces and connections (Ming-Chieh Chuang)

![](_page_52_Picture_0.jpeg)

### WES-BRB and Connection Designs

![](_page_53_Figure_1.jpeg)

Limit States : (1) Steel casing buckling (2) Joint region yielding **δ=0.02Lc** (3) Joint region buckling (4) Gusset block shear (5) Gusset yielding (6) Gusset buckling (7) Gusset to beam/column interface strengths

![](_page_54_Picture_0.jpeg)

國家心東二般的美中心

NCREE