

TWC's Thoughts on Implementing Seismic Improvement to Large Water Pipelines

Tsung-Jen Chiu, Feng-Ming Lu, Sheng-I Tseng, Glaus Ou, and Gee-Yu Liu

*

- Taiwan Water Corporation (TWC)
 - Largest water utility in Taiwan
 - 12 branches all over the island
 - 144 systems, total capacity 11.42 million CMD
 - Serving water to 6.87 million customers (17.98 million people)
 - Backbone to the rapid economic development of Taiwan since established in 1974

Problems encountered

- Lots of pipelines and facilities built in early years without any seismic consideration
- Systems vulnerable to earthquake hazards
- Majority of large water pipelines being fragile PCCP (pre-stressed concrete cylinder pipes) and PSCP (pre-stressed concrete pipes)
- Seismic enhancement of large water pipes in urgent need

Target large pipes needing enhancement

- Suggested by NCREE
- Three priorities, 232 pipe evaluation units, based on
 - 4 importance classes (very high, high, normal and low)
 - 10 risk groups (from high to low risk)

Priorit	y Order	Combination of (Importance, Risk group)	No. of evaluation units
First		(Very high, R1)	29
	2	(Very high, R2)	53
Second	3	(High, R1)	51
	4	(Very high, R3)	46
Third	5	(High, R2)	33
	6	(Very high, R4)	20

Key issue for implementing pipeline seismic enhancement

How to help all branches and headquarter of TWC to implement in a uniformly manner?

Answer: TWC needs to

- Specify the seismic objective for pipelines of different importance
- Specify the procedure to develop pipeline seismic assessment reports and implement seismic countermeasures

Seismic objective for pipelines

Seismic objective =
Performance level to achieve at a specified
Seismic demand (hazard level)

The more important a pipe is, the higher seismic objective should be satisfied!

Ground shaking

- **PGV** at a 10% chance of exceedance in 50 years (design earthquake)
- Code-specified site amplification and near fault effects considered

Soil liquefaction

- **PGD** at a 10% chance of exceedance in 50 years (design earthquake)
- In the pattern of settlement or lateral spreading
- **Design movement** employed instead to deal with uncertainty (ALA, 2005)

Class of pipeline	Design
importance	movement
Normal and low	PGD
High	$1.35 \times PGD$
Very high	$1.50 \times PGD$

Seismic demand (2)

Fault offset

- Mean offset by model of Wells and Coppersmith (a function of fault length)
- **Design offset** employed instead to deal with uncertainty (ALA, 2005)
- Pattern of fault offset considered

Class of pipeline	Design
importance	offset
Normal and low	Offset
High	$1.5 \times Offset$
Very high	$2.3 \times \text{Offset}$

- Landslide
 - Not considered

- For pipes of very high importance:
 - Being functional under specified seismic demand, or
 - If not functional, redundant and supporting pipes (for other systems) are able to provide 50% routine water need or more, or
 - If not functional, redundant and supporting pipes (for other systems) are able to provide 25% routine water need or more, and temporary pipes could be installed within 24 hours and able to provide additional 25%, or
 - Able to be repaired and functional again within 3 days, while there exists sufficient water storage for the first 3 days' urgent need.

Pipeline conveyance units

- Pipeline conveyance units: the node-to-node links in a pipeline network
- In a TWC branch, all units should be identified and treated as the basic units for seismic assessment

Example of a pipeline conveyance unit

Seismic assessment of a target pipeline conveyance unit

Development and implementation of large pipeline seismic enhancement

- Based on pipeline conveyance units
- To be reviewed and approved by HQ according to
 - optimal system improvement
 - capital and resources available
 - outside expectation and supports
 - else managerial and financial concerns

- Urgent need for TWC to enhance pipelines of (very) high importance and at high seismic risk has been clarified
- Seismic demand and performance level for pipelines of various importance have been proposed
- A procedure for developing pipeline seismic assessment reports and implementing countermeasures has been proposed

Thanks for your Attention!

Better Water

Taiwan Water Corporation, MOEA