Seismic Screening of Large Water Pipelines for TWC's Seismic Improvement Program

Karl Gee-Yu Liu, Chin-Hsun Yeh, and Lee-Hui Huang

The 10th JWWA/WRF/CTWWA Water System Seismic Conference

October 18-20, 2017, Tainan, Taiwan

國家地震工程研究中心

National Center for Research on Earthquake Engineering

承諾·熱情·創新

www.narlabs.org.tw

Target pipelines

- **4** All with a diameter of 800mm or larger
 - 2,229km
 - In terms of 6,500 plus GIS objects

4 Re-organized into 1,687 "pipeline evaluation units"

Seismic exposure

↓ Number of fault crossings
◆ 61 (3.6%)
↓ Number of fault vicinities
◆ 42 (2.5%)
↓ Pipelines in liquefiable areas (P_L ≥ 20)
◆ 314.9km (14.1%)

Goals and methodology

4 Goal: seismic screening

- Sorting according to importance
- Ranking according to seismic risk
- **4** Methodology
 - Hazard and vulnerability of pipelines
 - Independent and quantifiable
 - Risk
 - ► A combination of hazard and vulnerability
 - Risk-importance matrix

Importance of pipelines

4 Four classes of pipeline importance

- Very important
 - ► Very large flow, no redundancy, ...
- Important
 - ▶ ...
- Normal
 - ▶ ...
- Low
 - ► Low flow, one or more redundancies

Hazard maps (1), ground shaking

- # PGV of design earthquake (a 10% chance of exceedance in 50 years)
- 4 Derived from designed code-specified S_{D1} (spectral acceleration at T = 1.0s)
 - site amplification effect: medium site condition throughout
 - near fault effects considered except that from Chelungpu fault

Hazard maps (2), soil liquefaction

- *P_L* (liquefaction potential index) of design earthquake (a 10% chance of exceedance in 50 years)
 - 10 liquefaction susceptibility categories by Yeh (2015)
 - design code-specified PGA and earthquake magnitude
 - ground water level not considered

Hazard maps (3), fault rupture

- **4** L_c and L_v , effective lengths of a unit encountered with fault crossing and fault vicinity
 - Active fault map of Taiwan, with Chelungpu fault excluded
 - Different areas in hanging walls and footwalls for different types of faults

Hazard maps (4), landslide

4 Landslide score

 landslide potential map by Central Geological Survey, MOEA

Landslide occurred before

Quantified the hazards to a "unit"

Ground shaking	Fault rupture
$H_{GM} = \left(\overline{PGV} - 15\right)^{1.14} - \left(30 - 15\right)^{1.14}$	$H_F = \min(10L_c + L_n, 600) \cdot \overline{D} \cdot f$
$= \left(\overline{PGV} - 15\right)^{1.14} - 21.915$	$\overline{D} = \begin{cases} D & D < 1.0\\ 1.0 & D \ge 1.0 \end{cases}$ (D: mean offset)
$\overline{PGV} = \sum_{j} \frac{A_{j}}{A} \cdot PGV_{j}$	$f = \begin{cases} 1 & R \ge 500 \\ 2 - \frac{R - 200}{300} & 200 < R < 500 \\ 2 & R \le 200 \end{cases}$ (R: return period) R \le 200
Soil liquefaction	Landslide
Son nquenaetion	
$H_{LQF} = \overline{PL} \cdot \log_{10} L$	$H_{LS} = \sum_{j=1}^{4} \frac{A_j}{A} \cdot LS_j$
$H_{LQF} = \overline{PL} \cdot \log_{10} L$ $P_L = \sum_j \left(\frac{A_j}{A} \cdot P_{L,j}\right)$ $\overline{PL} = \begin{cases} 0 & P_L < 10 \\ P_L - 10 & 10 \le P_L < 30 \end{cases}$	$H_{LS} = \sum_{j=1}^{4} \frac{A_j}{A} \cdot LS_j$ $LS = \begin{cases} 0 & \text{Non} \\ 0 & \text{Low} \\ 1 & \text{Medium} \end{cases}$

2017/10/18-20

Diverse "hazards" to the pipelines 4 Ground shaking $PGV = 43.3 \sim 105.4 \text{ cm/s}$ **4** Soil liquefaction $P_L = 0 \sim 43.15$ **4** Fault rupture $L_c = 0 \sim 539 {
m m}$ $L_n = 0 \sim 1,833 \text{m}$ **4** Landslide $Score = 0 \sim 2.15$ How to combine them into a single **Hazard value** for each unit?

Combined hazards to a "unit"

4 Order points

- For each type of hazard, sort all units according to the hazard value from low to high
- Give the order point of a type of hazard to each unit $\begin{bmatrix} 0 & i = 1,...,1584 \end{bmatrix}$

$$\overline{H}_{GM}(i) = r\left(\frac{i}{1687}\right) \quad i = 1, ..., 1687 \qquad \overline{H}_F(i) = \begin{cases} r\left(\frac{i}{1687}\right) & i = 1585, ..., 1687 \end{cases}$$

$$\overline{H}_{LQF}(i) = \begin{cases} 0 & i = 1, ..., 606 \\ r\left(\frac{i}{1687}\right) & i = 607, ..., 1687 \end{cases} \quad \overline{H}_{LS}(i) = \begin{cases} 0 & i = 1, ..., 1469 \\ r\left(\frac{i}{1687}\right) & i = 1470, ..., 1687 \end{cases}$$

4 Normalized hazard to a unit

$$\overline{H} = 0.45\overline{H}_{GM} + 0.45\overline{H}_{LQF} + 0.08\overline{H}_{F} + 0.02\overline{H}_{LS}$$

Pipelines of different importance

Seismic Screening of Large Water Pipelines for TWC's Seismic Improvement Program

Vulnerability of pipelines

4 Of a pipe

$$V = \log_{10} \left(10 \cdot C_p \right) \times \left(\frac{800}{\phi} \right)^{0.125}$$

4 Of a pipeline evaluation unit

$$V = \sum_{k} \frac{L_k}{L} \cdot V_k$$

4 Normalized into [0, 1]

$$\overline{V} = \frac{V - V_{\min}}{V_{\max} - V_{\min}}$$

 C_p : Pipe type (joint) correction factor to the repair rate equation by Miyajima (2013)

(): **pipe diameter** in mm

Commitment Passion Innovation

NCREE

Risk and risk groups

4 Of a pipeline evaluation unit

$$R = \left(\overline{H} + 1\right) \cdot \left(\overline{V} + 1\right)$$

Sorting all pipeline evaluation units into 10 "risk groups" from high to low

2017/10/18-20

Risk-importance matrix

Risk Group	Very High	High	Normal	Low	Sum
R1	29	51	38	51	169
R2	53	33	40	43	169
R3	46	38	34	51	169
R4	20	56	28	65	169
R5	34	55	30	50	169
R6	18	45	47	59	169
R7	22	35	57	55	169
R 8	24	34	44	67	169
R9	41	27	31	70	169
R10	6	48	26	86	166
Total	293	422	375	597	1,687

2017/10/18-20

Priorities of units to for enhancement First priority: 29 + 53 = 82

- **4** Second priority: **51** + 46 = 97
- **4** Third priority: 33 + 20 = 53

Priority	Order	Combination	No. units
Einst	1	(Very high, R1)	29
FIISt	2	(Very high, R2)	53
Second	3	(High, R1)	51
Second	4	(Very high, R3)	46
Thind	5 (High, R2)		33
NCREE	6	(Very high, R4)	sion l 20 ovatio

2017/10/18-20

The suggested units from 4th Branch

No. of evaluation units	
47	_
3	
24	_

Very high importance, risk groups R1 and R2
Very high importance, risk groups R3 and R4
High importance, risk groups R1 and R2
Very high importance, risk groups R5 to R10
High importance, risk groups R3 to R10
Normal and low importance, all risk groups

2017/10/18-20

Concluding remarks

- **4** First step: screening
 - Hazard maps-based
 - 232 pipeline evaluation units (13.7%) suggested for seismic enhancements
 - ► First priority: 4.9%
 - ► Second priority: 5.7%
 - ► Third priority: 3.1%
- **4** Second step: assessment
 - Site investigation-based
- **4** Third step: implementation
 - Seismic objectives and strategy of TWC

Thanks for your attention!

Commitment Passion Innovation

2017/10/18-20