Study report of priority evaluation of earthquake resistance on water supply facilities focused on the restoration process of water supply

> NJS.CO.,LTD <u>Akihisa Ishida</u> Kimiyasu Ohtake Mikita Amano Keisuke Baba

Introduction

Earthquake resistance rate of water facilities

 \rightarrow It is effective for earthquake resistance management

- It is difficult to comprehend the effect of earthquake resistance
- It is important when water supply is expected to restart

The required days for recovery Suppliable water amount

- To create the restoration simulation model.
- To investigate the available water amount reaches the target water supply from this model.
- To investigate the model is available for determinatinig priority order.

Evaluation Process

- 1 Setting the scenario earthquake
- 2 Seismic performance evaluation of water facilities
- ③ Setting the restoration speed
- 4 Emergency restoration simulation
- 5 Determination of the priority order
- 6 Setting the target of earthquake-resistant

Target Area

Characteristics

It is a major city in Tokai area with a population of 700,000

It consists of a plain mainly for residential and mountainous areas

Scenario Earthquake

Nankai Megathrust Earthquake

The maximum seismic intensity distribution

Nankai Trough

- •4000m deep
- •Large-scale earthquake

occurrence area

Water Pipes

The breakage rate is 0.6 spot/km
The total interruption rate is 50 %

Restoration Term of Water Pipes

Diameter(mm)	Restoration speed (spot/squad•day)		
φ700 ~	0.20		
ϕ 500 ~ 600	0.25		
ϕ 300 ~ 450	0.50		
ϕ 200 ~ 250	1.00		
φ150	1.00		
<i>ф</i> 100	2.00		
~ φ 75	2.00		

Restoration Term of Purification and Distribution Stations

Name of water faility	Restoration term (day)	
Rapid filtration (not securing sesmic performance)	30	
Slow filtration (not securing sesmic performance)	30	

It is necessary to also consider the emergency restoration

of purification and distribution stations

Wembrane filtration	3
Water source	3
Distribution station	3
Pumping station	3

Simulation Content

Scenario Earthquake

Seismic Performance

Restoration Speed

Restoration Process

Available Water Supply

We compare available water supply and target water supply

Available Water Supply

The available water supply starts to increase when distribution and supply pipes get restored

Term	Purpose	Target Water Supply (L/person/day)			
3rd day	minimum water supply to survive	3			
10th day	bevarage, toilet	20			
21st day	bathroom, loundry	100			
30th day	genereal water supply	250			

Target Water

ZNJS

Emergency restoration simulation

Water Supply(L/Person /Day)

Simulation Result

	Restoration Term (days)					Priority		
Area	Purification	Transmission	Distribution	Distribution	Deficient Term of			Order
	Station	Pipe	Station	Pipe	Emergency Water Supply			
A	0*	10	3	24		37		3
В	15	8	3	12		38		2
С	0*	2	3	7		12		4
D	30	6	3	11		50	/	1
X Oblevingtion only								

X Chlorination only

We set the priority order by deficient term of emergency water supply

<u>The Result before earthquake resistance</u>

Setting the target of earthquake-resistant

Setting the target of earthquake-resistant

- •We evaluated the priority order quantitatively.
- It is important to consider the restoration of purification and distribution stations.
- •We need to focus on transmission pipes not just on distribution pipes.

- We consider it would be useful for the staff of water works to comprehend the current station and future plan of earthquake-resistance.
- •We need to see the difference between urban areas and local areas.