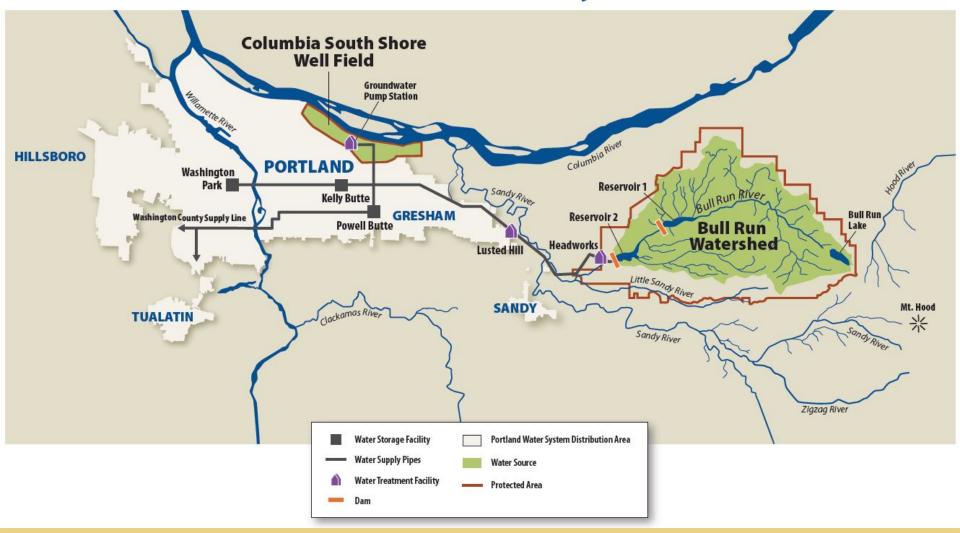
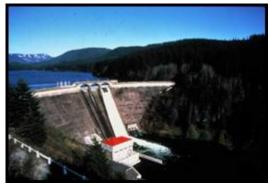

An Investigation of the Seismic Performance of Portland Water Bureau's Water System in an M 9.0 earthquake

CTWWA/JWWA/WRF Water System Seismic Conference October 2017



- Background
 - Portland's Water System
 - Oregon Resilience Plan
- Portland's Water System Seismic Study
- Water System Mitigation Recommendations
- Post Earthquake Repairs
- Next Steps



Portland's Water System

2 Dams

100 miles of large pipe

2,200 miles of Smaller dia. pipe

58 Tanks

40,000 valves

180,000 meters

38 pump stations

Portland Water Bureau Statistical Information

Oregon Resilience Plan (ORP)

- Specifies likely impacts of a magnitude 9.0 Cascadia earthquake.
- Defines target states of recovery goals to be met within 50 years.
- Recommends changes in practice and policy.
- <u>http://www.oregon.gov/OMD/OEM/osspac</u> /docs/Oregon_Resilience_Plan_Final.pdf

ORP – Target States of Recovery

	Event Occurs									
Domestic Water Supply	0-24 hours	1-3 days	3-7 days	1-2 weeks	2 weeks - 1 month	1-3 months	3-6 months	6-months - 1 year	1-3 years	3+ years
Potable water available at supply source (WTP, wells, impoundment)	20%-30% operational	50%-60% operational		80%-90% operational			90% operational (current state)			
Main transmission facilities, pipes, pump stations, and reservoirs (backbone operational)	80%-90% operational					90% operational (current state)				
Water supply to critical facilities available	50%-60% operational	80%-90% operational				90% operational (current state)				
Water for fire suppression - at key supply points	80%-90% operational		90% operational (current state)							
Water for fire suppression - at fire hydrants			20%-30% operational	50%-60% operational	80%-90% operational			90% operational (current state)		
Water available at community distribution centers/points		50%-60% operational	80%-90% operational	90% operational (current state)						
Distribution system operational		20%-30% operational	50%-60% operational	80%-90% operational				90% operational (current state)		

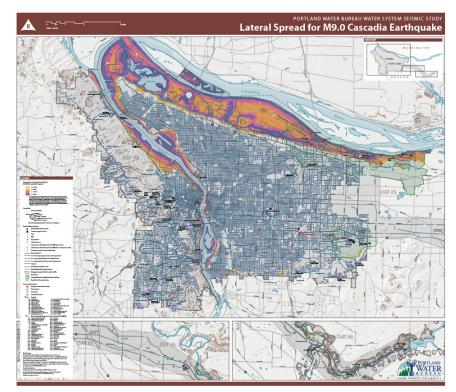
Water System Seismic Study Project Objective

Comply with the Oregon Resilience Plan (ORP)

- i. Complete a seismic risk assessment of PWB's water system.
- ii. Produce an infrastructure mitigation plan to meet or exceed the water recovery goals (target states of recovery) listed in the ORP.

Water System Seismic Tasks

- Task 1 Determine Permanent Ground Deformation (PGD)
- Task 2 Assess pipeline and facility performance
- Task 3 Model backbone system performance
- Task 4 Emergency preparedness and response
- Task 5 Develop & prioritize mitigation measures


Task 1– Determine Permanent Ground Deformation

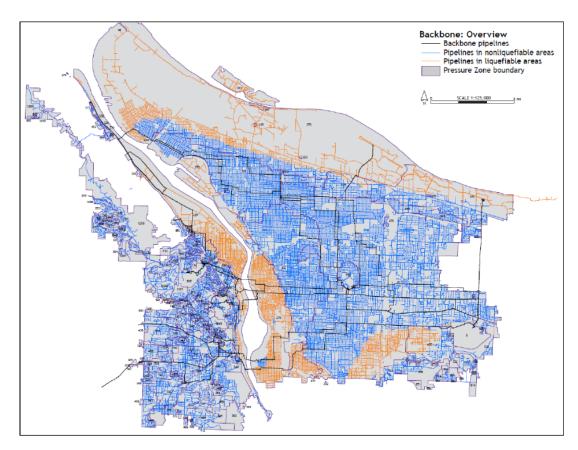
Deliverables

- Four (4) PDF Maps along with four new ArcGIS layers in the City's ArcGIS mapping system
 - Liquefaction Hazard
 - Lateral Spread
 - Ground Settlement
 - Landslide Deformation

Task 2– Assess Pipeline and Facility Performance

Facility Assessment

- As-built drawings and design specs
- Site reconnaissance
- Total (38) Pump Stations
- Total (58) Tanks

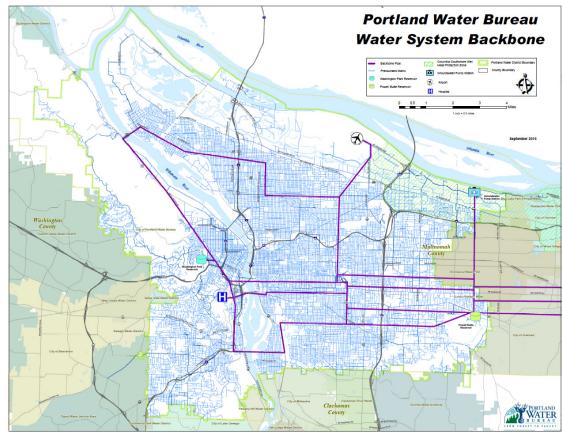

Pipeline Failures

TGD

I failure every 16 miles (1 break every 80 miles and 1 leak every 20 miles)

PGD

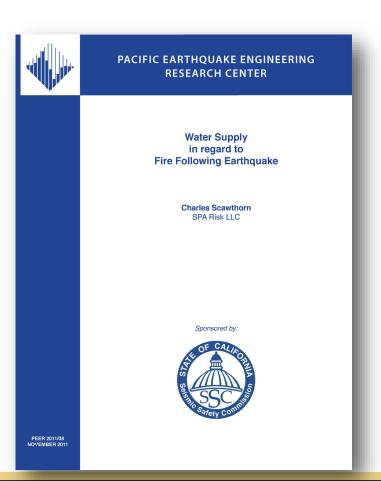
12 to 16 failures each mile



Task 3– Model Backbone System Performance

- Identified backbone including significant pipelines and critical facilities
- Used PWB's hydraulic model of the distribution system
- ORP goal is to have the backbone in service within 24 hours of the event

Task 4– Emergency Preparedness & Response



Task 4 – Emergency Preparedness & Response

Review Emergency Plans:

- Repair Plan
- Fire Flow Plan
- Potable Water Plan

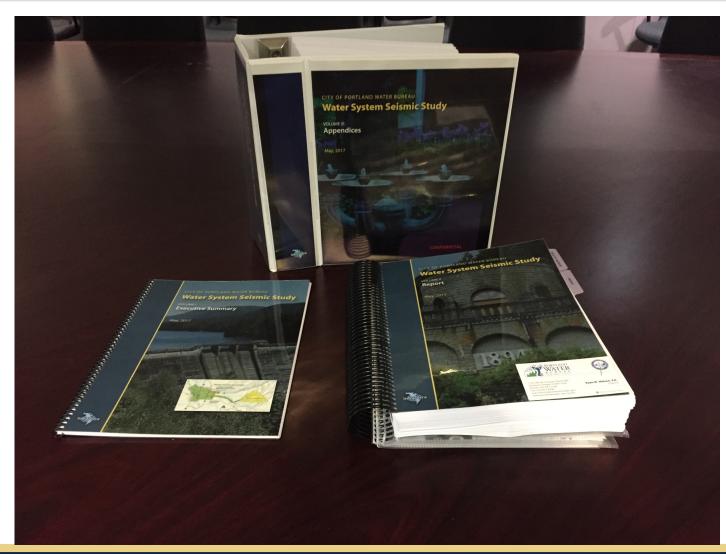
Task 5– Develop and Prioritize Mitigation Measures

Seismic Study Recommendations

- CIP Improvements \$980 million
 - Supply (Conduits, Groundwater)
 - Backbone (river crossings, terminal storage)
 - Distribution (liquefaction-susceptible piping)
 - Pump Stations (seismic retrofits)
 - Storage (tank anchorage, flexible piping connections)

Seismic Study Recommendations

- Non-CIP projects
 - Pressure zone isolation plan to limit system leakage
 - Mutual aid agreements and on-call contracts
 - Additional seismic evaluation of Conduit bridges
 - Stockpile repair resources
 - Assess need for additional portable generators
 - Develop and maintain hard copy utility maps
 - Anchorage for electrical, mechanical, and communication equipment



Post-Earthquake Repairs

- System Restoration
 - Rapid identification and isolation of damaged areas
 - Time and resources required for restoration
 - 5 days min for backbone leak repairs (40 crews; 12-hour days)
 - 5 weeks min for distribution leak repairs (40 crews; 12-hour days)
 - Cannot currently meet ORP guidelines

Next Steps

- Water System Seismic Study completed
- Proceeding with Implementation Plan (Capital, Non-Capital)
- Coordination with other lifelines for total mitigation

