

台北市既有水管橋耐震評估與補強

Seismic Evaluation and Retrofit of Existing Water Pipe Bridges in Taipei

Authors: Wei-Hsiang Lee, Kuan-Hua Lien, Po-Ming Cheng and Chii-Jang Yeh Sinotech Engineering Consultants)

Speaker: Po-Ming Cheng Technical Manager

The 10th CTWWA/JWWA/WRF Water System Seismic Conference October 18-21, 2017 Tainan, Taiwan

Motive

Speaker Introduction

Speaker : **Po-Ming Cheng** Structure P.E., Technical Manager

Company : Sinotech Engineering Consultant

(start from 1991)

Experience:

- 1. Building Design & 3D BIM Application
- 2. (Steel) Plant Design
- 3. New bridge design
- 4. Existing Bridge Evaluation & Retrofit

(2/4) (Steel) Plant Design

× 🖪 - Z 🖍 - Z 🥕

6

🛞 🎆 🎉 🔍 💭 😫 🗭 🔍 曼 🏹 🛄 🏦 💐 💐 standard

15324.60

20

ALD AND

SD

(4/4) Existing Bridge Evaluation & Retrofit

1.2	PLO	PL0~PL3 performance points PGA (after retrofit)			(before retrofit)
0.8 ش 0.6	PL1	PGA _{PL0} =	0.997	g	0.548
40 0.4	FL2 結構性能曲線 設計地震標準 中田地震標準	PGA _{PL1=}	0.848	g	0.440
0.2		PGA _{PL2=}	0.593> <mark>0.387</mark>	g	0.304
	0 10 20 30 40 50 Displacement (cm)	PGA _{PL3=}	0.271	g	0.114

Existing Bridge Evaluation & Retrofit(4A/4)

V=Kh·W=Z S I C₀ · W = 0.8 x 1.1 x1.2x0.15 · W=0.16W

1 Column Vert.	0.16 W
2 Column Hori.	0.16 W
3 Bearing & E.J.	0.16 W
4 Foundation	0.16W

$$V = \frac{ZI}{1.2\alpha_y} (\frac{C}{F_u})_m W = 0.607 / 3.96 \cdot W = 0.153 W$$

New Code

	1	Column Vert.	0.153W
(2	Column Hori.	0.607W (or Vp)
	3	Bearing & E.J.	0.607W (or Vp)
l	4	Foundation	0.607W (or Mp,Vp)

Existing Bridge Evaluation & Retrofit(4B/4)

3 Bearing & E.J. (mostly NG) Retrofit \$ about 2-5%

2 Column Hori. (mostly NG) Retrofit \$ about 5%

4 Foundation (maybe OK??) Retrofit \$ up to 50% 1 Column Vert. (maybe OK) Retrofit \$ about 5%

Existing Bridge Evaluation & Retrofit (4C/4)

Push-Over not on safe side ??

- 1. 30 % other direction not considered
- 2. Vertical E.Q. not considered

- 3. Temp. & CR&SH not considered (Continuous Bridge)
- 4. Soil Spring makes stiffness soft (Period increase)

but Soil Spring makes E.J. safe

Outline

Seismic Evaluation of Water Pipe Bridge

Evaluation results and retrofit strategy

Conclusion

01 Introduction

M

Location map of water pipe bridges

Water pipe bridge A

Water pipe bridge B

Water pipe bridge C

新北市

Water pipe bridge D

14

·劍潭水管B橋 Water pipe bridge B Water pipe bridge A

> 清一永福水管橋台北市 Water pipe bridge C

Basic information of water pipe bridges

Bridge name	Type (Completion year)	Span, Pipe length and diameter	Condition	
Water pipe bridge A (Yuanshan)	Arch steel bridge (1988)	§ 2000mm steel pipe length :100.6 m 1 span:100.6 m		
, , , , , , , , , , , , , , , , , , ,	Old Code	1		
Water pipe bridge B (Jiantan)	Cable-stayed steel bridge (1988)	 § 2000mm steel pipe length :140 m 3 spans: 34+72+34 m 		
× ,	Old Code			
Water pipe bridge C (Yongfu)	Arch steel bridge (1987)	2- § 2400mm steel pipe Length: 360 m 7 spans: 28.2+35+3@80 steel arch+30 16+26 2 m		
	Old Code			
Water pipe bridge D (Hsintien)	Arch steel bridge (1998) New Code	2- § 2400mm steel pipe Length: 290 m 5 spans: 25+3@80 steel arch+25 m	15	

Basic information of water pipe

Bridge name	Diameter	Length	Unit length	Elongation	Shrinka -ge	Eccentri- city
Water pipe bridge A (Yuanshan)	2000 mm	98 m	1600 mm	190 mm ×2	220 mm	61 mm
Water pipe bridge B (Jiantan)	2000 mm	140 m	1600 mm	190 mm ×2	220 mm	61 mm
Water pipe bridge C (Yongfu)	2400 mm	360 m×2	1400 mm 1500 mm	80 mm ×2 140 mm ×2	100 mm 160 mm	40 mm 40 mm
Water pipe bridge D (Hsintien)	2400 mm	290 m×2	1600 mm	80 mm ×2	100 mm	40 mm 16

02 Seismic Evaluation of Water Pipe Bridge

Standard of seismic Evaluation and Retrofit

Seismic retrofit performance criteria & objective

Performance criteria (Site : Taipei 1, 2 and 3 district)

Forthqualza laval	Horizontal acceleration		Seismic restraint	Service	Damage		
	CO	pefficient	concept	performance	grade		
	Divided by administrative region			Normal	Slight		
Moderate earthquake	1/3.25 of earthquake of 475-year return period		Structure keeps	water supply			
Mouerale earlinguake			elastic	after	Sign		
				earthquake			
Design earthquake	Divided by a	dministrative region	Component has	Limited			
(I=1.2)	S_{S}^{D}	0.72	component has				
Return period:975years			plastic ninge,	water suppry	Repairable		
50-year exceeding	S_1^{D}	1.60、1.30、1.05	exerting admissible	alter			
probability:5%	1		toughness capacity	earthquake			
Séismic performance level							

	Safety			Reparability	
Performance level	structure	foundation	foundation		Long period
PL3	Structure remains elastic	elastic	As same as prior to the earthquake	none	
PL1(2)	limited damages	elastic	Normal water supply	Partially replace d	repair or amaged ber19

Seismic retrofit performance criteria & objective

Seismic performance objective

Earthquake level		Design specification version						
				1987 and 41960year		Before 1960 year		
		Ordinary	Important	Ordinary	Important	Ordinary	Important	
Moderate		PL3	PL3	PL3	PL3	PL3	PL3	
Docian	Ordinary(I=1.0)	PL2	-	PL1	-	PLO		
Design	Important(I=1.2)	-	PL2	-	PL1		PL1	

Earthquake level	Seismic performance level	Structural response condition
Moderate	PL3	Structure remains elastic
Design	PL2	Structure into inelastic and 1/4 capacity developed
Max. considered	PL1	Structure into inelastic and 2/4 capacity developed
_	PLO	Structure into inelastic and all capacity developed

Seismic evaluation of water pipe bridge

Seismic evaluation of water pipe bridge

Time history analysis for superstructure

Pipe expansion joint

Bearing

Beam splicing

Artificial earthquake time history Spandrel column splicing

Check whether the component capacity meet the current design code

Pushover analysis for substructure

03 Evaluation results and retrofit strategy

Water pipe bridge A-structure description

Structure description

Old Code

- Single-span arch steel bridge; completion year in 1988
- Bridge length: 100.6 m; arch height: 9 m
- **Steel pipe diameter: 2000 mm; two steel box girder**
- Concrete: fc'=240 kgf/cm²; steel: A36

Water pipe bridge A-SAP2000 model and modal analysis

Water pipe bridge B-structure description

Structure description

- multi-span simply supported cable-stayed steel bridge;
 completion year in 1988
- Bridge length: 140 m; tower height: 26 m; 20 pair cables
- Steel pipe diameter: 2000mm; two steel box girder
- Concrete: fc'=240 kgf/cm²; steel: A36

Water pipe bridge B-SAP2000 model and modal analysis

Pushover analysis(1/2)

Performance objective		A	nit	
Earthquake	Ground	performance	PGA	Seismic
level	Acc. (g)		(g)	demand check
Moderate	0.074 g	PL3	0.104	OK
Design	0.240 g	PL1	0.296	OK30

Pushover analysis(2/2)

Performance objective			Analysis u	ınit
Earthquake	Ground	perform	PGA	\$eismic
level	Acc. (g)	ance	(g)	demand check
Moderate	0.074 g	PL3	0.160g	OK
Design	0.240 g	PL1	0.698 g	ОК 31

Water pipe bridge C-structure description

Structure description

multi-span simply supported arch steel bridge; completion year

in 1984

Old Code

- Bridge length: 359.60 m; arch height: 11 m •••
- Steel pipe diameter: 2400mm; *
- Concrete: fc'=240 kgf/cm²; steel: A36 **

Water pipe bridge C-SAP2000 model and modal analysis

Pushover analysis(1/2)

Performance	e objective	A	Analysis unit			
Earthquake	Ground	performance	PGA	Seismic		
level	Acc. (g)		(g)	demand check		
Moderate	0.074 g	PL3	0.150	OK		
Design	0.240 g	PL1	0.265	OK 34		

Pushover analysis(2/2)

Performance	e objective	Analysis unit				
Earthquake	Ground	performance	PGA	Seismic		
level	Acc. (g)		(g)	demand check		
Moderate	0.074 g	PL3	0.237	OK		
Design	0.240 g	PL1	0.301	OK 35		

Water pipe bridge D-structure description

Structure description

multi-span simply supported arch steel bridge; completion year **New Code** in 1998; Bridge length: 290 m; arch height: 10.5 m

- **Steel pipe diameter: 2400mm;**
- Concrete: fc'=240 kgf/cm²; steel: A36

Water pipe bridge D-SAP2000 model and modal analysis

Pushover analysis(1/2)

Performance	ce objective		Analysis unit			
Earthquake	Ground	perform	PGA	Seismic		
level	Acc. (g)	ance	(g)	demand check		
Moderate	0.074	PL3	0.313	ОК		
Design	0.240	PL2	1.181	OK 38		

Pushover analysis(2/2)

Performanc	ce objective	Analysis unit			
Earthquake	Ground	perform	PGA	Seismic	
level	Acc. (g)	ance	(g)	demand check	
Moderate	0.074	PL3	0.138	ОК	
Design	0.240	PL2	0.369	OK 39	

Time history analysis-Artificial time history

Pipe expansion joint check

Bridge	Earthquake station/record	Axial displacement (Demand)	Bridge	Earthquake station/record	Axial displacement (Demand)
	TAP007/0206	4.37 cm	\frown	TAP007/0206	11.83 cm
А	TAP008/0331	5.01 cm		TAP008/0331	23.48 cm
	TAP013/0921	4.35 cm		TAP006/0921	15.86 cm
	TAP029/0206	22.0 cm		TAP033/0331	5.71 cm
	TAP028/0331	23.8 cm	D	TAP053/0401	2.24 cm
	TAP028/0921	21.2 cm		TAP034/0921	4.35 m

Pipe expansion joint demand are larger than flexible capacity

Additional Outer flexible expansion joint

Retrofit scheme-Outer flexible expansion joint

Retrofit scheme-Outer flexible expansion joint

RECENSTRUCTION OF JAPAN LIMITED

Bearing strength check

Bridge		Α		В	
Abutment		A1/A2		A1/A2	
Direction		Longitudinal	Transverse	Longitudinal	Transverse
Demand	ton	126.6/	128.2/128.2	/	48/76
Capacity ton		34.2/	41.0/41.0	/	41.0/41.0
C/D value		0.27/	0.31 /0.31	/	0.85 /0.54
Check		N.G.	N.G.	/	N.G.

Bridge		С		D	
Abutment		A1/A2		A1/A2	
Direction		Longitudinal	Transverse	Longitudinal	Transverse
Demand	ton	126.6/	128.2/128.2	106/89	19.8/35.5
Capacity ton		34.2/	41.0/41.0	34.2/34.2	41.0/41.0
C/D value		0.27/	0.31 /0.31	0.32/0.38	2.0 /1.15
Check		N.G.	N.G.	N.G.	OK

Bearing seismic demand are larger than Bearing capacity

Bearing Retrofit scheme - steel anti-shock devices

Retrofit scheme		Function Impact	Constructio n	Costs	Duration	Maintain
Scheme 1	Replace- ment bearing	Acceptable	Acceptable	Acceptable	Acceptable	Excellent
Scheme 2	Steel anti- shock devices	Excellent	Excellent	Excellent	Excellent	Acceptable

Retrofit scheme 2 is proposed

Retrofit scheme - steel anti-shock devices

Retrofit scheme - steel anti-shock devices

Conclusion

Conclusion

Seismic Evaluation Results & NG parts will be retrofitted

-	Superstructure		1.2 Column	3.Pipe				
Bridge	Main Girder	3.Bearing	Vert. & Hori.	expansion joints	4.Foundation			
A Old Code	ОК	NG	Abutment, OK	OK	ОК			
B Old Code	ОК	NG	Just OK	NG	OK			
C Old Code	ОК	NG	Refrofitted,OK	NG	OK			
D New Code	ОК	NG	Very OK	ОК	Very OK			
Seism	c Retrofit S	chemes 🦰	Not as safe as					
The pipe expansion joints: Bridges designed by New and a								
One is the replacement pipe expansion joint								
scheme, the other is the additional Outer flexible Water pipe								

expansion joint scheme.

The bearings:

One is the replacement bearings scheme, the other is the additional RC or steel anti-shock devices scheme.

Thanks for your attention! I'll appreciate your comments!

