
Japan Water Research Center

Review of an Equation to Estimate Seismic Damage to Water Mains in Light of the 2016 Kumamoto Earthquake

Yuko TSURUDA Japan Water Research Center

Purpose and Process

Pipe Damage in Kumamoto City compared to Other Major Earthquakes

Assessment of Estimation Accuracy of the Equation

Damage prediction equation

JWRC Made

The equation to estimate (predict) the number of pipe failures in earthquakes

Analysis 1995 Kobe earthquake 2004 Chūetsu earthquake 2007 Chūetsu offshore earthquake 2011 Great East Japan Earthquake

Purpose of the equation

To Predict pipe damage easily and accurately To help utilities prioritize seismic improvement of pipelines

5

If there is no information available	If there is an information available on
on liquefaction or there is no	liquefaction and there is a possibility
possibility that liquefaction occurs	that liquefaction may occur
$R_m = C_p \times C_d \times C_g \times R(\mathbf{v})$	$\boldsymbol{R}_{m} = \boldsymbol{C}_{p} \times \boldsymbol{C}_{d} \times \boldsymbol{R}_{L}$
R _m : Estimated damage rate	R _m : Predicted damage rate
[locations/km]	[locations/km]
C _p : Correction factor for pipe and	C _p : Correction factor for pipe and
joint type	joint type
C _d : Correction factor for pipe diameter	C _d : Correction factor for pipe diameter
C _g : Correction factor for	R _L : Average damage rate of
microtopography	liquefaction area [locations/km],
R(v): Reference damage rate [locations/km]	$R_L = 5.5$
R(v)=9.92×10 ⁻³ ×(v - 15) ^{1.14} v: Peak ground velocity (PGV) (cm/s) (15≦v <120)	

Correction factor

Pipe and joint type	C _p	Diameter (mm)	C _d	Microtopography where pipes are installed
DIP(A)	1.0	Φ50 - 80	2.0	
DIP(K)	0.5	Ф100 - 150	1.0	Mountain, mountain foot, hill, volcanic area,
DIP(T)	0.8	Ф200 - 250	0.4	volcanic mountain foot, volcanic hill
DIP(disengagement prevention)	0	Ф300 - 450	0.2	Gravel upland, loam upland
CIP	2.5	Φ500 - 900	0.1	Valley lowland, alluvial
VP(TS)	2.5		II	fan,humid lowland plain, delta,
VP(RR)	0.8			coastal lowland
SP(welding)	0.5/			Natural levee, former river channel, sandbar, gravel bar, dune
SP(non-welding)	2.5			Reclaimed land, drained
ACP	7.5			land, lakes and marshes
PE(electrofusion)	-			

Cg

0.4

0.8

1.0

2.5

5.0

Purpose and Process

Pipe Damage in Kumamoto City compared to Other Major Earthquakes

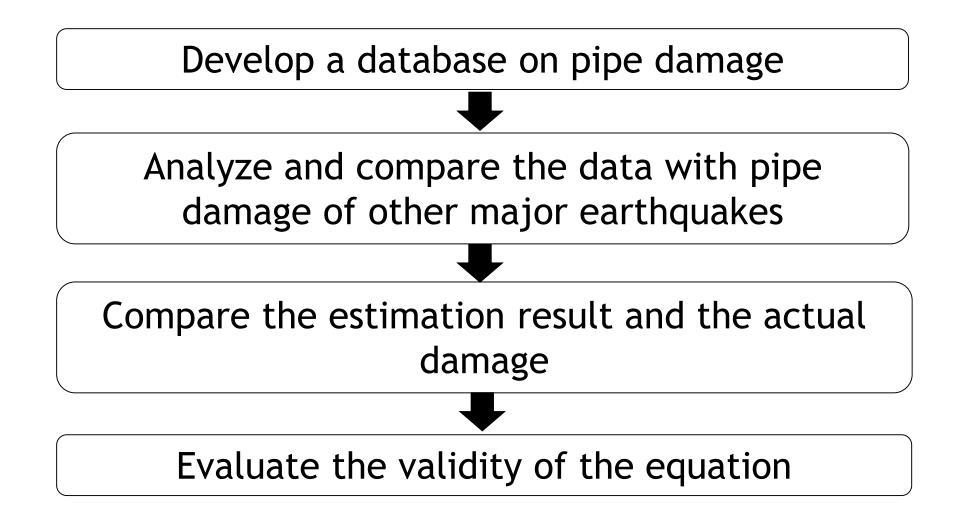
Assessment of Estimation Accuracy of the Equation

In April 2016, the Kumamoto Earthquake

The Kumamoto Region of Japan was hit directly by two earthquakes of magnitude greater than Mw 6.0 that occurred consecutively over a three-day period.

Source: Ministry of Health, Labour and Welfare

Kumamoto city


In the wake of the Kumamoto Earthquake

Reviewed the equation to

see if it would need a

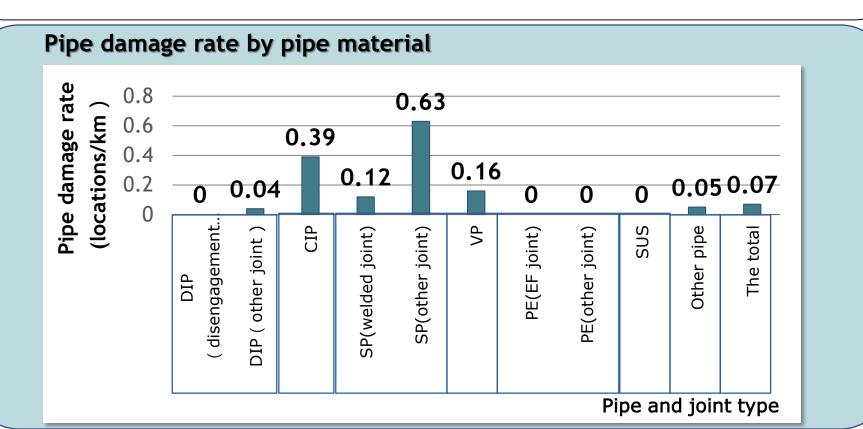
further update to improve its accuracy of damage

estimation.

About the Equation

Purpose and Process

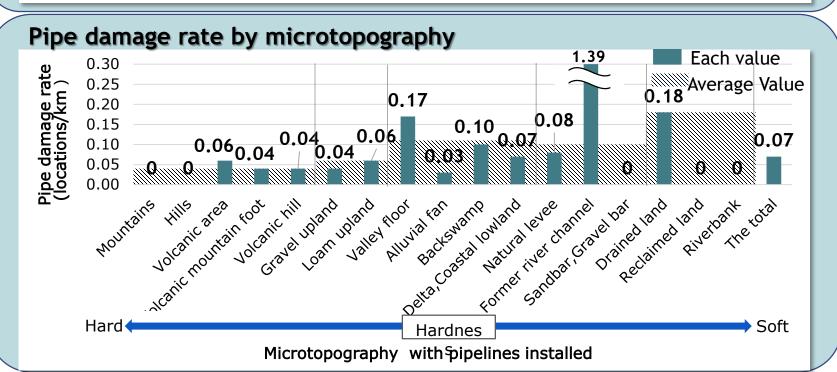
Pipe Damage in Kumamoto City compared to Other Major Earthquakes


Assessment of Estimation Accuracy of the Equation

Pipe Damage in Kumamoto City

- Analyzed : Pipelines length 3,238 km
 - Number of pipe damages **233 locations**

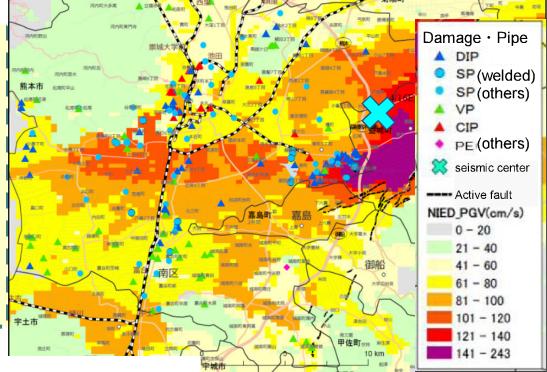
*Covers only mains with over 50 mm diameter


Pipe damage rate : 0.07 locations/km

Pipe Damage in Kumamoto City

Pipe damage rate by pipe diameter 0.19 0.2 Pipe damage rate (locations/km) 0.15 0.09 0.1 0.07 0.06 0.05 0.04 0.04 0.05 0 0 The total unknown φ50 Φ75 φ100-150 φ200-250 φ300-450 **Φ500**≤ Pipe diameter (mm)

13



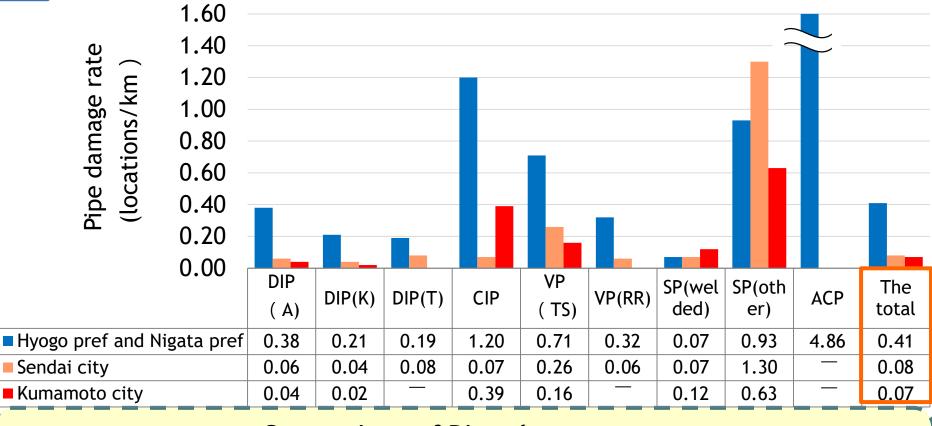
Pipe Damage Rate by peak ground velocity(PGV)

The pipe damage rates are larger where PGVs are greater.

^oipe damage rate (locations/km)

This tendency is the same as the current reference damage rate curve of the equation.

14


2.76

0.29

Pipe damage rate by PGV 0.50 0.40 0.30 0.30 0.20 0.10 0.09 0.04 0.06 0.07 0.06 0.05 0.10 0 0 0.00 < 50 50-60 50-70 70-80 80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160 PGV(cm/s)

Comparison with Other Major Earthquakes

15

Comparison of Pipe damage rate

■ Hyogo Pref ^{※1} . and Niigata Pref ^{※2} .	0.41	locations/km	\Rightarrow	About 1/10
Sendai city ^{×3}	0.08	locations/km	\Rightarrow	About the same

%1 : 1995 Kobe earthquake

※2: 2004 Chūetsu earthquake, 2007 Chūetsu offshore earthquake

3 : 2011 Great East Japan Earthquake

About the Equation

Purpose and Process

Pipe Damage in Kumamoto City compared to Other Major Earthquakes

Assessment of Estimation Accuracy of the Equation

< Verification method >

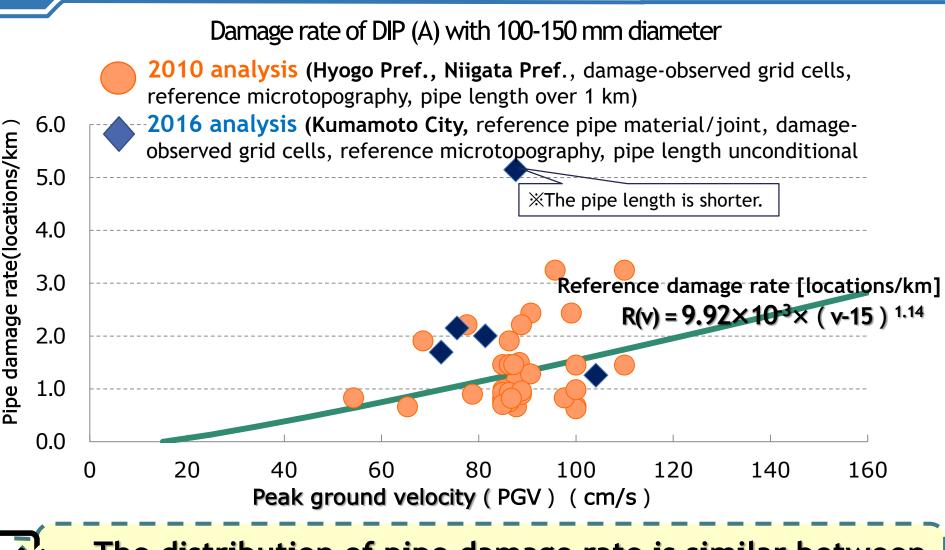
For each correction factor...

The ratio of the damage rate of other pipe material/joint, diameter, and microtopography to the damage rate of the reference pipe material/joint, diameter, and microtopography is the value corresponding to the correction factor.

There fore

Assessed the accuracy of the correction factors by comparing the damage rate of each reference item & other items in the Kumamoto Earthquake

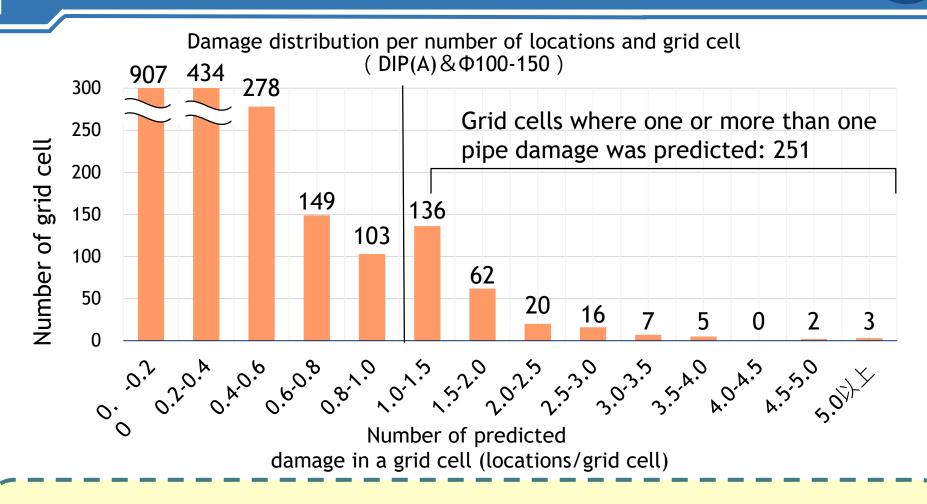
The reference factor $\cdot \cdot \cdot$
• The reference pipe material/joint $\cdot \ \cdot \ \cdot \ DIP(A)$
• The reference diameter $\cdot \cdot \Phi$ 100-150
• The reference microtopography $\cdot \cdot \cdot \cdot \cdot \cdot$ valley lowland,
alluvial fan, humid lowland plain, delta, or coastal lowland


Evaluation Result of the Correction Factors

18

DAMAGE RAT	E BY PIPE M	ATERIAL/JO	DINT FOR TI	HE REFEREN GRAPHY	ICE DIAMET	ER AND
0.6						
0.4						
0.2						
	CIP	DIP(K)	DIP(A)	SP (welded)	SP (other)	VP
Pipeline length(m)	26,124	211,508	515,753	3,981	1,664	63,678
Pipe damage (no. of locations)	14	7	22	1	10	8
Pipe damage rate (locations/km)	0.536	0.033	0.043	_	_	0.126
Ratio to the damage rate of DIP (A)	12.5	0.8	1.0	_	_	2.9
Comparison						
Correction factor(Cp)	2.5	0.5	1.0	0.8/0	2.5	2.5

 DIP (K) and VP, their actual damage rates in relation to DIP (A) are close to the correction factors.


 We consider CIP's damage rate was more susceptible to the number of pipe damages than other pipes since its installation length is shorter.

· Ç,

The distribution of pipe damage rate is similar between the Kumamoto Earthquake and the other earthquakes

Assessment of Pipe Damage Prediction Accuracy

- The number of grid cells with more than 1 damage predicted was 251
- Actual damage 19 grid cells
- Actual damage < Predicted damage = Prediction on the safe side

About the Equation

Pipe Damage in Kumamoto City compared to Other Major Earthquakes

Assessment of Estimation Accuracy of the Equation

Tendencies of the correction factors and reference damage rates are consistent with the past analysis.

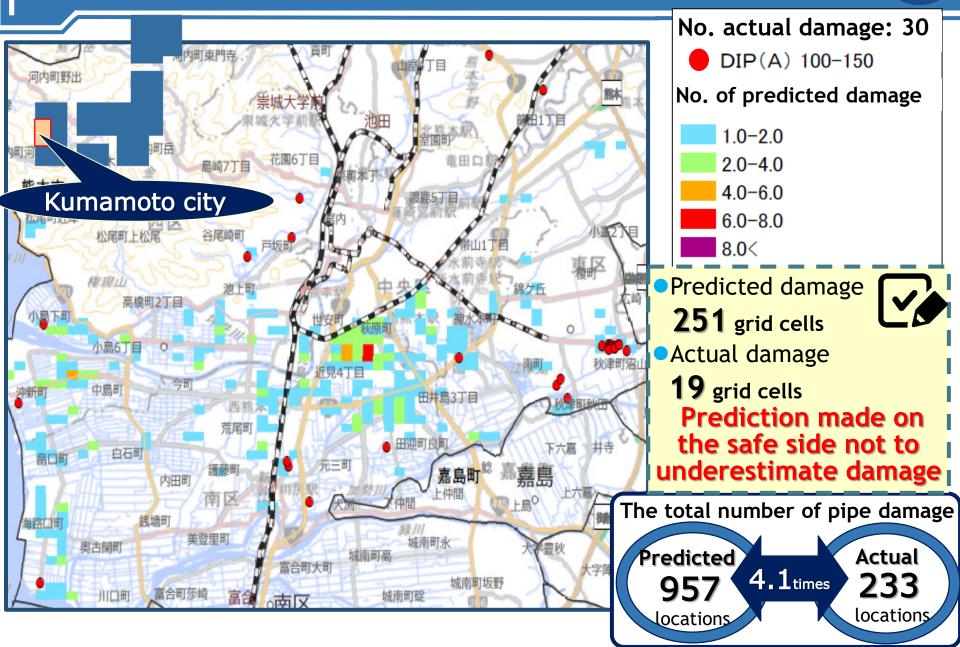
 No immediate modification is being planned at the moment

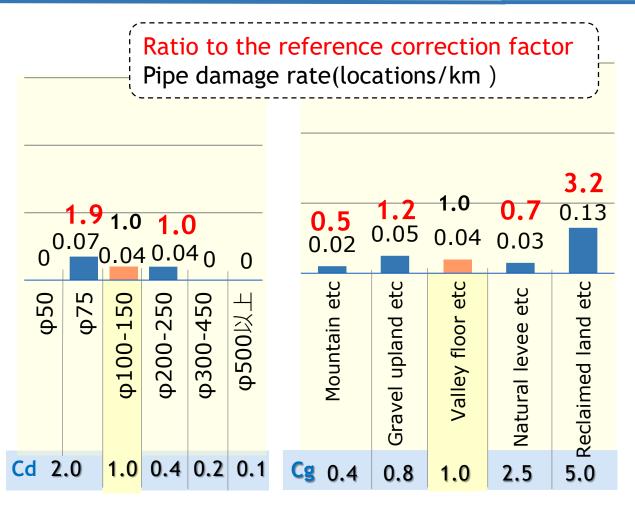
However, the equation might have predicted a little too far on the safe side as it provided a number of damage a few times larger than the actual one. Therefore, this aspect would need further improvement in future.

Conclusions

We expect this equation will be utilized by more utilities to help an effective pipe renewal and replacement for an improved preparedness against future seismic risks!!

We would like to extend our gratitude to the Kumamoto City Water and Sewerage Waterworks Bureau for their data provision as well as to the water utilities and private companies that participated in this review process.


Thank you very much for your kind attention


Japan Water Research Center

Assessment of Pipe Damage Prediction Accuracy

25

Evaluation Result of the Correction Factors

DAMAGE RATE BY PIPE DIAMETER FOR THE REFERENCE MATERIAL/JOINT

DAMAGE RATE OF THE REFERENCE MATERIAL/JOINT WITH THE REFERENCE DIAMETER BY MICROTOPOGRAPHY 26