The 10th CTWWA/JWWA/WRF Water System Seismic Conference

Verification and Evaluation Method for the Seismic Performance of Potable Water Mains Lined with Cured-in-place Pipe (CIPP)

> Hiromasa ISHIZEKI Chief Engineer, Potable Water Products PALTEM, Ashimori Industry Co., Ltd.

Why we do this? – CIPP (Cured-in-place pipe)

Ashimori property and confidential

Why we do this? – CIPP, example of PALTEM

Agenda

1. Why we do this

- 2. Past performance of CIPP in seismic areas
- 3. Loading test on pipe specimen with CIPP
- 4. Verification by calculation

Why we do this? - Industrial background

Seismic standards for trenchless pipe rehab

• Sewer

Level 1 & 2 classification and performance criteria for CIPP

• Gas

CIPP standardized for sealing purpose in earthquakes

• Potable water

CIPP installation record not enough for standardization

Agenda

1. Why we do this

2. <u>Past performance of CIPP in</u> <u>seismic areas</u>

- 3. Loading test on pipe specimen with CIPP
- 4. Verification by calculation

370 km of our liners were used in...

Past performance – cross-checking

	Year	Earthquakes	S	Max. intensity	Mw	
	Jan/17/1995	Great Hansh	Great Hanshin		6.9	
	Oct/06/2000	West Tottor	West Tottori		6.8	
	Oct/23/2004	Chuetsu	Chuetsu		6.6	
	Mar/25/2007	Noto	Noto		6.7	
	Jul/16/2007	Chuetsu Offsh	Chuetsu Offshore		6.6	
	Mar/11/2011	Tohoku		7	9.0	
PALTEM CIPPs installed in						
Municipalities stricken by intensity 6+ <u>6,690 m</u> Areas in which liquefactions						

No failure reports

Agenda

- 1. Why we do this
- 2. Past performance of CIPP in seismic areas
- 3. Loading test on pipe specimen with <u>CIPP</u>
- 4. Verification by calculation

Before testing – understanding CIPP

<u>Characteristics of CIPP suppress</u> <u>pullout phenomena of host pipe</u> <u>during earthquakes</u>

Before testing – understanding joint pullout

$$R = \sigma_{2L} \times A = \frac{\pi \cdot D \cdot \tau \cdot L}{2A} \times A$$

- *R* : Pullout force at joint
- A: Sectional area
- D: Outside diameter of pipe
- τ : Friction between pipe and ground (=0.0098 N/mm²)
- L: Length of pipe

No joint pullout should occur when friction forces are...

Ground and existing pipe (approx. 0.01 N/mm²) Existing pipe and CIPP (0.025 ~ 1.000 N/mm²)

(JWWA)

Testing – loading test, preparation

Testing – loading test, execution

Hydrau

DIP300A x 6 m x 2 (Mortar lined) Internal water pressure 0.75 MPa

evel-2 EQ load x 2

ad applied 60 kN

lype-k joint

Ashimori property and confidential

Testing – loading test result, no joint pullout

CI	PP	"Super-HL" Ф300, t=4.0 mm			
Host	t pipe	DIP, Ф300 mm, L=6,000 mm x 2			
Spec	cimen	No.1	No.2	No.3	
	Close-fitting	\checkmark	\checkmark	\checkmark	
CIPP's properties	Expansion	\checkmark	\checkmark	✓	
	Adhesion	-	-	-	
Load	applied	60 kN (Estimated seismic load ¹⁾ w/ s.f. 2)			
1) JWWA					

No joint displacement, leak or damage under 60 kN

Testing – forcing joint pullout

DIP 300A x 6 m x 2, type-K joint (Mortar lined)

Testing – forcing joint pullout

	Test I (SP, 4 m)		Test Ⅱ(DIP, 12 m)	
Direction of displacement	Comp.	Tensile	Tensile	
Max. displacement (mm)	50	58	210	
A) Max. load applied (kN)	16	65	427	
B) Estimated seismic load (kN) ¹⁾	9.	23	27.69	
A∕B	appro	x. 18x	approx. 15x	

1) JWWA

- <u>15 times the estimated seismic load was needed</u> <u>to generate joint displacement</u>
- No leaks or damages resulted from displacement

Agenda

- 1. Why we do this
- 2. Past performance of CIPP in seismic areas
- 3. Loading test on pipe specimen with CIPP
- 4. <u>Verification by calculation</u>

Verification – selecting calculation conditions

Based on observation, CIPP within jointed pipeline is

Calculation conditions for CIPP within host pipeline

	CIPP	SP
Structural classification	Continuous pipe	
Joint	Ignored	No joint
Slippage between host pipe and ground	Ignored	Considered
Tensile elastic modulus	CIPP	SP
Allowable strain setting	CIPP	SP

Verification – allowable strain for Level-1 EQ

Dynamic property ≤ Elastic range

0.6% strain (equivalent to Level-1 seismic motion) cyclically applied for 300 times at the speed of 5 mm/min

Verification – allowable strain for Level-1 EQ

Determined to be 0.6%

Water-tightness to be maintained under plasticization

1.2% strain (Level-2 equivalent) cyclically applied for 100 times on 5 Hz frequency.

Input strain	Specimen	Specimen status after testing	Tensile strength after testing (MPa)
	1	No damage	Avg. 137
1.2%	2		↓ No strenath
	3		deterioration
-	4	_	140

For Level-2, 1.2%

Verification – in a model ground condition

Depth to the center of the pipe (h')

⁽JWWA)

Verification – in a model ground condition

		Level-1	Level-2	
	Design internal pressure	0.152%		
Normalland	Vehicle load	0.046%		
Normarioau	Temperature change	0.015%		
	Unbalanced subsidence	0.010%		
Seismic load	c load 0.060% 0.502%		0.502%	
Тс	otal strain in axial direction	0.283%	0.725%	
	Allowable strain	0.600%	1.200%	
	Result of verification	Within Allowable strain	Within Allowable strain	

Test proved past performance

Pipe with CIPP behaves like continuous pipe

Calculation method selected for CIPP

Ashimori property and confidential

Future challenge still remains

Contact: Hiromasa Ishizeki hiomasa_ishizeki@ashimori.co.jp