Verification of Design Method of Pipeline Crossing Fault with Earthquake Resistant Ductile Iron Pipe Using Large-scale Split-box test

KUBOTA Corporation Keita Oda

Background

There are approximately 2,000 active fault in Japan

Source: Headquarters for Promotion of Earthquake Research, Japan Public Works Research Institute, Japan

①Subsequent Aftershock of the 2011 Great East Japan Earthquake

② The 2016 Kumamoto earthquake

ERDIP (Earthquake Resistant Ductile Iron Pipe)

Spigot

ERDIP (Earthquake Resistant Ductile Iron Pipe)

ERDIP (Earthquake Resistant Ductile Iron Pipe)

ERDIP have no documented damages in past earthquakes.

Our goal of research

- To confirm how large can ERDIP pipeline withstand fault displacement.
- To create countermeasures against large displacement.

Previous research

Items	Criteria
Axial force	< 3D kN D: diameter in mm
Joint deflection angle	< Allowable deflection angle
Stress on pipe body	< Proof stress (270 MPa)

➡ No plastic deformation

Purpose of this study

We have to know whether the pipeline behavior during a fault movement becomes more excessive than assumed

Testing under the extreme conditions.

Four-point bending test

Large scale split-box test

Four-point bending test set-up

Bending specimen during and after the test

[12.2°]

[32°]

Test result (Joint deflection angle <12.2)

No leakage occurred at 12.2°, which is 1.5 times the performance limit of GX-type joint

Test result (Joint deflection angle \geq 12.2)

The first leakage was observed at 12.2° The leakage stopped at the deflection of 16.6°

Large scale split-box test set-up

① Pressurized with water to approximately 550 kPa (80 psi)

(2) Moved one of the two boxes using the actuators

Test procedure

Items	Conditions
Туре	Glacio-fluvial sand
Global average dry unit weight	16.6 kN/m ³ (105.6 lb/ft ³)
Global average moisture content	3.7%
50% particle diameter	0.59 mm
Coefficient of uniformity	3.35
Coefficient of curvature	0.83
Friction angle	42 [°]

Large scale split-box test

Test box after the test

Specimens after the test

- No leakage immediately occurred even though the fault displacement exceeded 1.1m.
- When the fault displacement was 1.13m, the end of the spigot of joint S5 passed the rubber gasket and leakage occurred.

Each joints are deflected and ERDIP pipeline absorb the fault displacement.

Test result of joint deflection angle

Test result of joint opening

Test result of joint opening

When the fault displacement was 1.13 m, the amount of extension of joint S5 reached 210 mm. At this time, the end of the spigot passed the rubber gasket and leakage occurred. Deflection of the joint

No leakage occurred until the joint deflection reached 12.2° (which is approximately 1.5 times larger than the maximum joint deflection i.e., 8°)

Extension of the joint

No leakage occurred until the joint extension reached 210mm (which is approximately twice larger than the limit performance)

Conclusion

- The ERDIP pipeline could absorb large fault displacement well and no leakage occurred when the joint deflected and extended to a large extent.
- It was not until the joint deflection reached 12.2° which is approximately 1.5 times larger than the maximum joint deflection i.e., 8° that no leakage was visually observed.
- It was not until the joint extension reached 210mm which is approximately twice larger than the limit performance that no leakage was visually observed.

Pipeline design method based on the performance limit of the ERDIP joint can result in a satisfactory advantage

Thank you for your attention.

Joint opening
$$= \frac{(\delta_A + \delta_B + \delta_C)}{3}$$

Deflection angle =
$$tan^{-1} \frac{(\delta_A - \delta_B)}{d}$$

Displacement gauge

Displacement gauge

断層実験方法 ②測定項目・方法

Joint opening
$$= \frac{(\delta_A + \delta_B + \delta_C)}{3}$$

$$Deflection \ angle = tan^{-1} \frac{(\delta_A - \delta_B)}{d}$$

Displacement gauge

Large scale box experiment

Analysis model

Basic test for rotation spring

Result comparison

- FEM analysis results were similar to the experiment results.
- FEM analysis can be used for safety assessment of fault crossing pipeline.

Pipeline displacement

Joint deflection angle

Study of reverse fault

Study of reverse fault

Pipeline movement

Property of ductile cast iron

Joint spring for shell element

Spring of unit

Example of a basic test

Design of fault crossing ERDIP

(Example: DN1500mm US-type ERDIP)

Analysis conditions

Fault displacement (m)	Axial force (kN)	Stress (MPa)	Joint deflection (deg)
1.0	2,212	25	3.1
1.6	4,314	49	3.7
2.0	5,760	67	4.0
3.0	9,460	111	4.6
Limit value	4,500	270 (Elastic limit)	4.0

Accommodate about 1.6m displacement (The stress within elastic limit)

LDAPS (Large Displacement Absorption Pipeline System)

LDAPS···ERDIP with multiple LDAPS UNIT

Analysis result(1/2) [Axial force]

Axial force of LDAPS less than 3DkN(4,500kN)

Analysis result(2/2)

[Tensile stress]

Fault displacement: 3.0m

Fault type in Japan

	Reverse fault	Normal fault	Strike-slip fault
Туре			
Number	196	28	165

Fault in Japan

Cost effective

DN1500 US-type joint , pipeline length: 200m

Fittings joint of ERDIP

Fitting is provided with restrained joint.

Water pipeline in Japan

Source: Japan Water Works Association (JWWA)

Major Earthquakes after the 1995 Kobe Earthquake

No damage on ERDIP (Large ground deformation)

1995 Kobe Earthquake

4.3 feet (1.3m)

Ground Subsidence

ERDIP 12" (No damage)

2000 Tottori Earthquake

Liquefaction

No damage on 12" ERDIP

(Scoured ground by Tsunami)

Tsunami at 2011 Great East Japan Earthquake

No damage on 16"(400mm) and 6"(150mm) ERDIP

Landslide caused by heavy rain / typhoon

Design flow

Example of design of fault-crossing pipeline

Denali earthquake, 2002, US

Example of design of fault-crossing pipeline

SCOTT BLAIR, PIPELINE TO SURF SEISMIC WAVES(2014)

Axial force

Moment vs. rotation

Test set-up (12 in.)

Test result (12 in.)

