Lessons Learned from Damage to Drinking Water Supply System in the 2016 Kumamoto Earthquake in Japan

> Masakatsu Miyajima Kanazawa University, Japan

Outline of earthquake and damage

• Damage to pipeline in liquefaction area

• Damage to air valve

• Outline of earthquake and damage

• Damage to pipeline in liquefaction area

• Damage to air valve

2016 Kumamoto EQ • Date and time : 2016.4.16 1:25 local time ◆ Magunitude : Mj=7.3 · Mw=7.0 ◆ JMA Seismic Intensity : 7 : Nishihara, Mashiki 6+: Minami aso, Ozu, Uki, etc. Damage : Totally collapsed houses: more than 8,000 49 death and 1 missing after the mail shock

PGA & PGV in Kumamoto EQ

Fore Shock

	Site Name	PGA(m/s/s)	Site Name	PGV(m/s)
1	KiK-net Mashiki	9.25	Mashiki-machi, Miyazono	1.38
2	Mashiki-machi, Miyazono	8.15	KiK-net Mashiki	0.92
3	Kumamoto nishi ku, Kasuga	7.36	K-net Kumamoto	0.72

Main Shock

	Site Name	PGA(m/s/s)	Site Name	PGV(m/s)
1	Ozumachi, Ozu	17.54	Nishihara-mura, Komori	2.56
2	KiK-net Mashiki	13.14	Mashiki-machi, Miyazono	1.82
3	Minamiaso-mura, Kawayou	12.92	Minamiaso-mura, Kawayou	1.39

Horizontal displacement 2.0n

DIP (K-type) φ 100

Pipe bending and joint slip-out

DIP (K-type) φ 150 ' φ 200

Joint slip-out

HIVP $\varphi \ 1 \ 0 \ 0$ at normal fault

写真:ダクタイル鉄管協会提

Damage to intake well

Suspension of water supply at all household (about 326,000) due to turbidity

Location of damage to Pipe

National Research Institute for Earth Science and Disaster Resilience Mesh data of PGV distribution in the 2016 Kumamoto Earthquake

Damage rate of each pipe type

Pipe material	DIP (disengag ement preventio n)	DIP (other joint)	CIP	SP (welded joint) ^{*2}	SP (other joint) ^{* 3}	VP	PE (EF joint)	PE (other joint)	SUS	Other pipe
Pipe damage (no. of locations)	0	72	36	8	59	55	0	0	0	3
Pipe Installation length (km)	583	1882	92	68	93	346	97	8	5	63

• Outline of earthquake and damage

• Damage to pipeline in liquefaction area

• Damage to air valve

Liquefaction in Kumamoto City

Liquefaction in Kumamoto City

Liquefaction area in Kumamoto City

National Research Institute for Earth Science and Disaster Resilience. Mesh and point data of liquefaction distribution in the 2016 Kumamoto Earthquake

Piping length and Damage rate

Pipe type	DIP (ER)	DIP(other)	CIP	SP(welded)	SP(other)	VP	PE(EF)	PE(other)	SUS	Other	Total
Pipe length (km)	5.3	15.1	1.1	0.5	0.1	0.5	0.4	0.0	0.0	1.2	26.7
Number of location		8		3	3	3					17
Damage rate (/km)*	0	0.53	0	-	-	-	0	0	0	0	0.64

• Outline of earthquake and damage

• Damage to pipeline in liquefaction area

• Damage to air valve

Damage to valve

Floating valve body Float valve body Float valve body guide Valve chest

Damage to valve

Location of damage to valve

Flow rate and water pressure

Mechanism of draw of water

• Outline of earthquake and damage

• Damage to pipeline in liquefaction area

• Damage to air valve

- Pipe length of liquefied area is about 0.8% of the total length in Kumamoto City. The damage rate of pipelines in liquefied area was however about ten times of that in non-liquefied area.
- The pipelines crossed a surface faulting suffered severe damage. The countermeasure for pipeline crossed a fault is necessary in the future.
- The damage to air valve was caused by not only strong ground motion but also abrupt decrease of water pressure in a pipe. The cause of abrupt decrease of water pressure in a pipe just after an earthquake should be clarified.