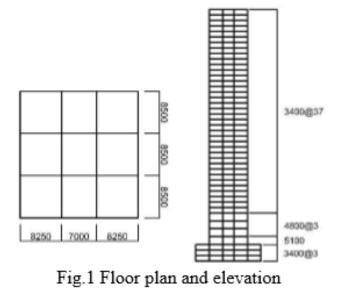
Grand Opening Forum @ NCREE Tainan Lab August 9-10, 2017


From Earthquake Engineering Research to Social-economic Applications

Heui-Yung Chang < <u>hychang@nuk.edu.tw</u> > Department of Civil and Environmental Engineering National University of Kaohsiung

Two 40-story Steel Office Buildings

Two 40-story steel office buildings have been designed for the site of Taipei Microzonation II with a base shear coefficient of 0.0857.

One building uses SN490 steel in all the columns, and the other changes to use SM570 steel in the columns from the base floor to the 14th floor. The use of SM570 steel has caused the 40-story building to save steel up to 140 ton in total, approximately 3%.

			~ ~	-	
	Thickness t (mm)	Yield strength (N/mm ²)		Tensile strength (N/mm ²)	Elongation (%)
SN490B steel	25-80	16≦ <i>t</i> ≦40	40< <i>t</i> ≦100	100 610	aa :
		325~445	295~415	490~610	23 min
SM570 steel	28-70	16< <i>t</i> ≦40	40 <t≦75< td=""><td>490~610</td><td>26 min</td></t≦75<>	490~610	26 min
		450	430	490~010	26 min
SM490B steel	10-36	<i>t</i> ≦16	16< <i>t</i> ≦40	570~720	23 min
		325	315	570~720	23 ШШ

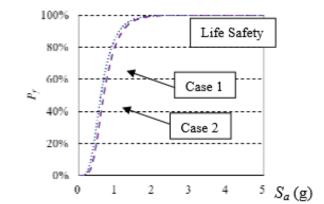
Table 1 Yield strength, ultimate strength and elongation of SN490B, SM570 and SM490B steels

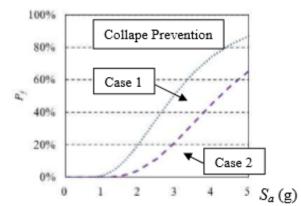
Table 2 Amount of SN490B, SM570 and SM490B steels (in ton)

	SN490B steel	SM570 steel	SM490B steel	Total
Case 1	2843	-	2203	5046 (100.0%)
Case 2	1284	1393	2233	4906 (97.23%)

Cost-benefit Analysis of Applying SM570 Steel to Tall Buildings in Taiwan, Advanced Materials Research Vols. 1079-1080 (2015) pp 419-422

Drift Demands and Fragility Curves

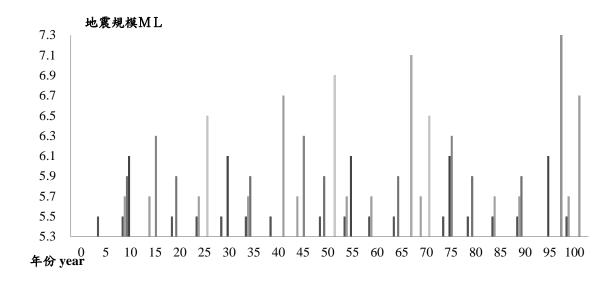

Table 2 Drift res	ponses to design	earthouake (D	DE) and maximum (considered eartho	make (MCE)	
I dole 2 Dilleles	ponses to design	. cuanquate (D		constacted out any	aute (

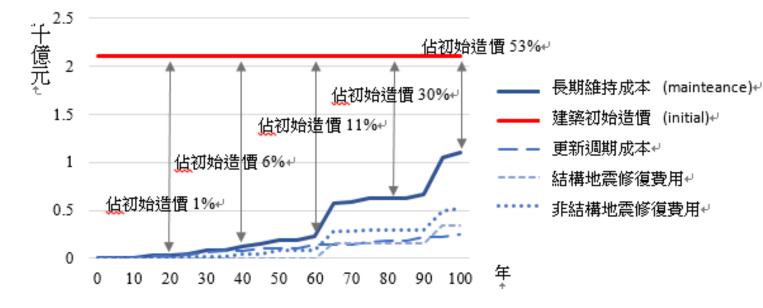

\sim	Drift response to DE			Drift response to MCE		
	Average	Standard deviation (σ)	l+ σ response	Average	Standard deviation (σ)	
Case 1	1.78%	0.52%	2.30%	2.22%	0.43%	
Case 2	1.67%	0.40%	2.07%	2.04%	0.31%	

The stress ratios of steel sections and story drift ratios of the buildings have been limited to 0.9 and 0.005, respectively.

Table 3 Results of regression analysis

Case 1: SN490B steel box columns			Case 2: SN490B+SM570 steel box columns		
a b β			а	Ь	β
0.0313	0.4340	0.2046	0.0290	0.3789	0.1655





The periods (T) of the two buildings are 3.90 sec and 4.06 sec, respectively

The use of SM570 steel reduces the column sections and building stiffness. To limit the drift of the building, the beam sizes have been enlarged.

That helps reduce the drift demands, improving the building fragility against earthquake collapse

100-year Cost Analysis

	Case I+2	Case II↔	ę
Steel Structure	7.3億 (5.6-6.7)や	7.3 億 (5.7-6.8)₽	¢.
Architecture	21 億↩	21 億↩	¢,
Structure+ ²	3.38 億🖁 (30%)🖓	2.32 億 (23%)+2	ę
Non-structure*	5.16 億🖁 (47%)🖓	5.16 億 (52%)や	÷
vation₽	2.5 億🖁 (23%)🖗	2.5 億 (25%)+2	¢.
Total₽	11.04 億↩ (100%)↩	9.98 億 (100%)	4
	Architecture+ ³ Structure+ ³ Non-structure+ ³	Steel Structureや 7.3 億 (5.6-6.7)や Architectureや 21 億や Structureや 3.38 億や (30%)や Non-structureや 5.16 億や (47%)や ovationや 2.5 億や (23%)や	Steel Structureや 7.3 億 (5.6-6.7)や 7.3 億 (5.7-6.8)や Architectureや 21 億や 21 億や Structureや 3.38 億や (30%)や 2.32 億 (23%)や Non-structureや 5.16 億や (47%)や 5.16 億 (52%)や vvationや 2.5 億や (23%)や 2.5 億 (25%)や

The use of SM570 steel makes almost no difference to initial construction cost, but that probably helps cut 30% seismic recovery fee

In sum, the cost ratio between 100-year maintenance and initial construction approximates to 0.5, and the cost ratio between seismic recovery and building renovation approximates to 3.0.

Analyses of Long-term Maintenance Cost for High-rise Steel Buildings in Taiwan, submitted to JOURNAL OF ARCHITECTURE

Cost for the Coming Disastrous Earthquake

Maintenance cost for unit area per month (元/坪、月)+

 \mathbf{P}

		20year@	21~40year∉	41~60 year	61~80 year₽	81~100 year	Average
ę	Case I ₂	167₽	202.0	215₽	3780	424.0	277÷ ÷
	Case II.	167₽	202*	2150	342₽	400₽	265~ ~
	Current₽	150₽	1500	1500	150₽	150₽	1500 0

A primary analysis suggests a necessity of increasing the maintenance cost for the coming disastrous earthquake

There is still a great necessity of further studying the series of earthquake events and the impacts on buildings...