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Disasters provide the impetus
for change
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Progress in earthquake
engineering

Driven by: Taipei, 1960’s
0 Urbanization
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Progress in earthquake
engineering

Driven by:

0 Urbanization

O Architecture
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Progress in earthquake
engineering
Driven by:

O Urbanization

O Architecture

0 New Design Tools
& Technology

0 Economics

O Occupant, owner
and public
expectations

O Seismic events




Seismic Events

Near fault ground motions provides an
Important and technically challenging focus

0 What are characteristics of motions for
design purposes?

0 What are damaging (not dynamic) features
of near-fault motions?

0 What are effective and economical means for
a structure to resist highly uncertain near-
fault motions?

Large inelastic peak and residual drifts
Soft stories



Numerous Aftershocks:
Cumulating/Repeated Damage

Cumulative Number of Aftershocks (Magnitude>=5.0)
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Numerous Aftershocks:
Number, Size and PROXIMITY
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Observation: Earthquake Engineering
Effective In Reducing Loss of Life

Sndai, Japan

Structural damage due to ground shaking was relatively light for new
structures even in regions of very heavy shaking



Engineering tools available to

prevent widespread loss of life

1999 Kocaeli, Turkey, Earthquake 2008 Wenchuan, China, Earthquake

Achieving “Life Safety” remains a major issue
for developing countries and other regions
susceptible to large but low probability events

Policy - Enforcement - Low Cost Toughness - Education






Older facilities remain
vulnerable to earthquakes

more research IS needed to:

2t But much High risk struct_ureS
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——— on, shelter in place,
Earthquake o cy, etc.)

prompted nu ' effective and

: ' thods
+ Mandated f¢ econ0m|Ca\ retrofit me
¢ At change i Research-backed consensus

occupancy and major remodels standards exist and these

+ Voluntary upgrades are being continually
improved by research
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How to repailr a damaged
structure?

0 How safe Is a damaged building?

O Does it need emergency repairs to make it
safe for workers and adjacent property.

0 What performance criteria should be used
for permanent repairs?
= Restore to pre-quake condition
= Upgrade to current code?
= Restore to other criterion?

0o When to repair (immediately, later, etc.)?
0 How effective are repair procedures?

NCREE Tainan Laboratory Grand Opening Forum August 9-11, 2017



WIDE SPREAD damage due to soll
liguefaction and permanent settlement

Urayasu,
Near Tokyo
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Nonstructural Elements Pose
Life Safety Concerns

* N —
2010 Chile Earthguake
Santiago Mid-Rise Building. (Yanev)




Equipment protection

Will these topple if more realistic displacements imposed?
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Next challenge for engineers:
Earthquake-Resilient Structures

In Earthquake Engineering, our future
challenge is to develop new or improved
structures and infrastructure systems that:

v protect public safety, and are
v economical,
but that

v can be constructed quickly with
minimal disruption to the public
and to the environment, and

v can withstand strong earthquake
ground shaking (and other
hazards) safely, with little disruption
or cost associated with post-
earthgquake inspections and repairs.




Can we trust ssimulation results?
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Common Characteristics of
Disaster-Resilient Structures

Earthquake resisting system that controls
distribution of inelastic deformations
Durable and/or easily replaceable
energy dissipation regions/devices
Easy and safe post-event
Inspection, including SHM
Protect structural and nonstructural
elements, and contents, by limiting
> Relative displacements
> Accelerations
Self-centering mechanism to minimize
permanent displacements.




Potential Opportunities at
NCREE@Tainan

PEER/KEPCO/IAEA Hybrid Test of NPP

o Modified UCSD SRMD to carry out hybrid
simulations of seismically isolated Nuclear
Power Plant

O Relatively complex 3D
model of superstructure

0 Rock site (no soll
modeled)

0 Modelled 1solators as
various combinations of real and
numerically simulated bearings




Near Real Time Hybrid Simulation Test
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Floor spectra w/o & w/ vertical
Input
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Another idea:
Hybrid (“Smart”) Shaking Tables

O Large systems such as tall buildings,
bridges with variable column height &
large Soil-Foundation-Structure Systems
are difficult to test on shake tables

Shaking Table Numerical Model Shaking Table Numerical Model



Shaking Table Implementations

<« UC Berkeley

= Long stroke 1D table
= 6 DOF table

<« TongJi University
= Four table array

o Implementation for: -, |
= Seismic excitations = b
= Wind excitation (in i
progress)

Shaking Table Numerical Model



Aerodynamic Loads + Structural HS
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Aerodynamic Loads + Structural HS
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Aerodynamic Loads + Structural HS

Cp (ti)

Up to 6 interface
DOF

Thus, same setup can be
used for seismic and
wind excitations

Feed forces from
, load cells back
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Resilience: the next challenge
IN earthgquake engineering

Earthquake engineering relates to managing seismic
risk to “locally” acceptable levels.

Need:

O

O

Reliable and cost effective methods for assessing
and reducing vulnerability of the existing inventory
of structures and lifeline systems

Robust structures that are insensitive to structural
and ground motion characteristics.

Refined performance-based engineering methods:

To achieve with high confidence continuing functionality
following significant earthquakes

Identify reliable and low cost methods to prevent collapse
under exceptionally rare seismic events.

Resilient lifelines and service networks.
Accurate simulation methods and models
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