Earthquake Simulation and Near-Fault Ground Motions

Jack Moehle UC Berkeley

NCREE

Effect of ground motion on collapse behavior

Column detailing

Sample results

Typical Modern Column

Typical Older Column

Sample results

Modern Details

Shin, Galanis, Moehle, EESD 2016

Sample results – Modern columns Haselton et al (2006) model

Sample results – Modern columns Haselton et al (2006) model

Seismic hazard analysis

Seismic hazard analysis

ARUP, based on Shahi and Baker (2011)

Seismic hazard analysis

Reinforced Concrete Frames with High-Strength Reinforcement Under Near-Fault Ground Motions

To and Moehle, ongoing, Pankow Foundation

Beam and column tests (Grade 60 to 100)

Test setups

Beam Test

Column Test

Material properties

Spread of plasticity

Test results - Column bond failure

Sokoli and Ghannoum, ACI Structural Journal, 2016.

Test results – Column bond failure

Archetype building design

Archetype Frame Building (Visnjic 2014) Conventional Grade 60 Reinforcement

Seismic hazard

Hypothetical location of archetype buildings from United States Geological Survey report (marked with bull's eye)

Pseudo-Acceleration Design Spectra

Selected and scaled ground motions

Near-Fault Ground Motions

Station: El Centro Imp. Co. Cent

Station: El Centro Imp. Co. Cent

Station: El Centro Imp. Co. Cent

Station: El Centro Imp. Co. Cent

Dynamic analysis results: Mean drifts for different reinforcement

Dynamic analysis results: Mean story drift ratios for different reinforcement

Column shears

— Nonlinear Dynamic

(c) beam hinging

ACI 318-19 Code Changes (tentative) **High seismic** 100 to 150 mm *h*/4 • Permit Grade 80 (550) $6d_{h}$ (5d_h) as required for shear $-T/Y \ge 1.17$ $2.5I_d$ - elongation ≥ 0.10 • Details as shown ΛΙ - Grade 60 150 mm $\vdash \mathbf{s} \leq \left\{ 6d_b \left(\mathbf{5d}_b \right) \right\}$ - Grade 80 d/4

 $\geq 20d_{h}$ (26d_h)

Hoops

along $2h_h$

Earthquake Simulation and Near-Fault Ground Motions

