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The	“Large-N”	arrays	all	over	the	world

The	AlpArray	Initiative	(http://www.alparray.ethz.ch)

USArrayHi-net	&	Strong	Motion	Networks	in	Japan

(Okada	et	al.,	2004)

Long	Beach	Array	(Lin	et	al.,	2012)



Development	of	dense	tsunami	networks

(Rabinovich	and	Eble,	2015,	PAGEOPH)
(www.bosai.go.jp)

(noaa.gov)

Cabled	pressure	gauge	&	seismographs



Motivation

■	How	to	utilize	these	large	dataset	?	

■	for	understandings	inhomogeneous	subsurface	structure	
■	for	more	deep	understandings	of	physics	of	wave	  
			propagation	in	heterogeneous	media	

■	for	real-world	application,	in	particular	early	warnings 
				of	earthquakes	and	tsunamis	

■	SigniTicant	improvement	on	station	density	compared	to	wavelength	
■	Obtain	more	information	through	two-dimensional	continuous	  
				waveTield	modeling	
■	Independent	two	topics	on	tsunami	and	seismic	wave	propagation



The	new	S-net

■	Super	dense	realtime	network	for	
seismic	&	tsunami	wave	
monitoring	

■	A	part	of	the	network	started	
observation	from	2016	

■	With	a	dense	network,	we	may	be	
able	to	track	2D	tsunami	
wave/ield	

■	No	source	is	necessary	for	
forecasting	?

(www.bosai.go.jp)



A	new	approach:	Data	assimilation

■	Not	relying	on	source	data	
■	Estimate	wave/ield	

■	Directly	Tit	tsunami	simulation	
with	observation	

■	Estimated	waveTield	is	further	
used	for	better	Tit	of	tsunami	at	
next	timestep	

■	Always	running	=	monitoring	
■	Tsunami	forecast	can	be	done	
whenever	it	is	necessary
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Data	assimilation	as	a	feedback	system

■	#1)	Forecast	by	numerical	simulation	of	linear	shallow	water	

■	#2)	Assimilation:	A	Feedback	from	observation	residual
:	tsunami	height,	M&N:	tsunami	Tlow	velocity

(Kalnay,	2003;	Maeda	et	al.,	2015)
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or geodetic dataset for estimating tsunami source as early as possible (e.g., Titov et al., 2005; Wang et 
al., 2012; Tsushima et al., 2009; 2012).  
 
Recently, Maeda et al. (2015) tested a new approach on tsunami real-time forecasting by directly 
estimating tsunami wavefield at present time rather than the initial condition of slip of source fault and/or 
initial sea height, by applying the data assimilation technique which has long been developed in 
atmospheric and ocean sciences (e.g., Kalnay, 2003). Maeda et al., (2015) performed numerical tests 
with hypothetical dense tsunami observations, followed by an application to the real data obtained by 
ocean bottom pressure gauges (Gusman et al., 2016). In what follows, we briefly introduce theory and 
an example on real-time tsunami wavefield estimation by the data assimilation.  
 
The tsunami data assimilation consists of two steps. First, the tsunami height !" at current (n-th) time  
step at whole area of interest is forecasted by integrating a tsunami forecast equation with known tsunami 
height at previous time step. We here adopt a simple linear long-wave equation (Goto, 1984) as 
governing equation:  

  

!"# $, & ← !"()* $, & − ,- $, &
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(1) 

where (-,/) are the vertically-integrated horizontal velocity components of tsunami in $- and &- 
directions, 3 is the gravitational acceleration constant, and ℎ is the sea depth. As a second step, the 
forecasted tsunami wavefield is updated by residual between observed and forecasted tsunami heights 
at stations:  

  

!"* $, & ← !"# $, & + 6 $, &; $89, &89 !":;< $89, &89 − !"# $89, &89
=

, 

 

(2) 

where !":;<  is observed tsunami height at the current time step at i-th station location of $89, &89 , 
!"# $89, &89  is numerically forecasted tsunami at station location. Notice that the number of observation 
is expected to be much smaller than that of numerical grids. Thus, the data assimilation process of (2) is 
a sort of interpolation. The interpolation kernel 6($, &; $8, &8) maps the observation residual at station 
to surrounding numerical grids, and it can be obtained analytically under the assumption of linearity in 
forecast equation (1) and time-invariance of statistical properties based on the optimum interpolation 
method (Kalnay, 2003; Maeda et al., 2015). The kernel 6 depends only on the station layout and a 
priori statistical parameters on error covariance; it greatly simplifies the assimilation process and 
contribute to quick forecasts. This forecast-and-assimilate cycle (equations (1) and (2)) can be repeated 
successively without any input except for the tsunami height at stations; This forecast does not rely on 
the source data at all. Once tsunami is generated, the assimilation automatically detects its amplitude, 
and the data is rapidly taken up to the numerical model of tsunami.  
 
This method was tested with hypothetical observation of near-field large earthquake with S-net (Maeda 
et al., 2015; Figure 1), and with the real observation (Gusman et al., 2016) obtained by ocean bottom 
pressure gauges (Sheehan et al., 2015). The former, a numerical test for synthetic observation of the 
2011 Tohoku earthquake (Maeda et al., 2011b) with S-net station configuration (Figure 1), shows that 
the data-assimilated tsunami wavefield automatically detects the initial tsunami propagation from the 
source area. These quickly coalesced into a continuous wavefront that increasingly resembled the input 
data as time went on. As a result, the data-assimilated tsunami recovered the wavefront of the synthetic 
tsunami as it approached the coastline. The latter real-world application to an offline ocean-bottom data 
suggests effectivity of this method for future cabled real-time tsunami network.  
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■	A	weight	factor	W	can	be	estimated	by	the	optimum	
interpolation	algorithm	based	on	the	station	layout	

■	The	forecasting-assimilation	cycle	is	repeated	with	updating	  
observed	data	in	real	time



Far-/ield	tsunami	forecast	by	the	DA

■	Reconstruct	continuous	
waveTield	through	
assimilation

(Maeda	et	al.,	2015,	GRL)

Numerical	forecast	experiment
Real-world	postcasting		

with	Cascadia	Initiative	OBPGs	

(Gusman	et	al.,	2016,	GRL)



Near-/ield	pressure	problem

■	Only	relative	tsunami	
height	can	be	measured	
by	pressure	gauges	

■	Co-seismic	seaTloor	
deformation	beneath	
stations	results	Tictitious	
offset	on	tsunami	

■	Recent	updates	of	data	
assimilation	technique	
succeeded	in	separating	
between	coseismic	
seaTloor	deformation	and	
true	tsunami	height

Forward	Simulation

Pressure	measurement

True	tsunami	height

Sea/loor	deformation

New	Data	Assimilation

Pressure	estimation

True	tsunami	height	estimation

Sea/loor	deformation	estimation



Dense	seismic	observation

■	Station	separation	~	20	km	
■	Targeting	long-period	band:	
■	Wavelength	~	100	km	@	25	s	

■	We	can	treat	the	traces	as	a	
continuous	wave/ield	

■	Observation	is	only	on	the	
ground	surface:	  
still	difTicult	to	assimilate	to	
numerical	models	

■	Data-driven	approach:	obtain 
more	information	from	wave-  
Tield	modeling

(Maeda	et	al.,	2011,	JGR)



Seismic	gradiometry

■	Taylor	series	expansion	of	seismic	waveTield	

■	Estimation	of	wave	at	grid	point	and	spatial	gradients	  
by	the	least	square	

■	Inverse	problem	at	each	grid,	however	it	only	depends	on	station	layout	
■	Pre-computation	of	the	kernel	save	the	computational	cost

uobs = Gm

(Spudich,	1995	JGR;	Liang	and	Langston,	2009	JGR)

station grid	point



Wave/ield	characterization

(Langston,	2007,	BSSA)

(Shapiro	et	al.	,	2000,	BSSA)

■	Divergence	&	rotation	vector	with	free	surface	B.	C.	
■	Convert	derivative	wrt	depth	to	that	wrt	horizontal	directions	by	B.C.		

■	Slowness	estimation	
■	observation	=	(amplitude	term)	x	(propagation	term)	

■	A(x):	Term	related	to	geometrical	spreading	and/or	radiation	pattern	
■	B(x):	Slowness	(arrival	direction	&	phase	speed)



Synthetic	test

rot (z)

div

•Hi-net	with	SG	act	as	
div&rot-seismometers	
•Love	&	Rayleigh	
decomposition

Goodness-of-Fitdiv/rot	decomposition@25-50	s



■	In-situ	estimation	of	slowness	vector	(speed	&	direction)

Example:	2005	Off-Tohoku	outer-rise	eq.

(Maeda	et	al.,	submitted)



Divergence	&	rotation	decomposition

■	Decompose	the	vector	seismic	waveTield	into	  
divergence	(P&Rayleigh)	and	rotation	(z)	(SH&Love）

(Maeda	et	al.,	submitted)



Concluding	remarks

■	The	full	utilization	of	recent	dense	arrays	enables	us	to	
track	seismic/tsunami	waves	as	spatially	continuous	
waveTield	
■	Space-time	visualization	helps	deep	understandings	of	
complicated	wave	phenomena	
■	Spatial	waveTield	is	not	only	the	simple	visualization	but	is	
a	target	of	data	analysis:		
■	Seismic	gradiometry	
■	Data	assimilation	

■	Potentially	useful	for	next-generation	EEW?		
■	Next	challenge:	Assimilation	of	seismic	waves	?
Acknowledgement:	We	used	Hi-net	records	provided		by	National	Research	Institute	for	  
Earth	Science	and	Disaster	Resilience.	


