

國震中心 科普系列 2017.6.2 (五)

盆地效應

温國樑、簡文郁 林哲民、郭俊翔、黃雋彦

承諾·熱情·創新

www.narlabs.org.tw

Response Spectrum

- Topographic effects
- Soil layer effects
- Basin effects

各沖積層測站所記錄之 PGA 值與 Sadigh et al.衰減公式之比較。

4

1985年墨西哥地震

各地質區記錄之最大加速度

圖四、1985年9月19日地震時墨西哥市各地質區記錄之最大加速度(摘自 Mendoza, 1988)

圖 七 、 1985年 9月 19日 地 震 時 墨 西 哥 市 各 地 震 站 之 加 速 度 歷 時 記 錄 (摘 自 Bard , 1988)

各地質區之加速度反應譜

圖九、1985年9月19日地震時,不同地質區加速度反應譜之比較(摘自 Seed, 1987)

加速度富氏譜放大倍率與災區分布圖

NARLabs

圖十、週期1.75至2.75秒間,墨西哥市富氏振幅放大信率(RA)大於14區域(摘自Singh, 1988)

1985年墨西哥地震之盆地效應

- 尖峰加速度放大效應
 - 岩盤上測站記錄之水平PGA為35gal以下,顯示地 震波因傳遞400公里而衰減之現象。
 - 盆地邊緣上測站記錄之水平PGA為160gal,顯示 沖積層之震波放大效應很明顯。
- 反應譜特定頻率放大效應
 - 岩盤上測站之反應譜較偏向短週期且振幅較小。
 盆地邊緣上測站之反應譜頻寬較窄,且集中於2
 秒之反應。
- 地震動延時延長效應

921地震台北地區測站PGA分布圖

1999年9月21日集集地震(ML=7.3)在大台北地區強震站所收錄之PGA(東西向)

1999年9月21日集集地震在大台北地區加速度歷時紀錄

Depth: 9km

Δ: 101.6 km

921主震沖積層與岩盤測站之頻譜比

Spectral ratio contours of the Chi-Chi earthquake.

921餘震沖積層與岩盤測站之頻譜比

921以前地震之平均頻譜比

Mean spectral ratio obtained before the Chi-Chi earthquake. The earthquake used are occurred at south-eastern and eastern direction of the Taipei basin.

Soil/Rock - 2.0 sec

NAR Labs 國家實驗研究院

Soil/Rock - 0.5 sec

臺北盆地第三紀 基盤頂部深度分 布圖(地調所)

Depth contour to the basement top From deep drilling.

Central Geol. Surv.

а	沖積層	/	剖面線 ·	井號	基盤深度	井深	井名	鑽井單位	井號	基盤深度	井深	井名	鑽井單位
t	階地堆積	/	基盤等深線	A-22	70.0	75.0		高公局	SC-2			三重二號井	地調所
an	安山岩流	•	鑽井位置	A-32	71.6	76.7		高公局	SL-1	202.5	230.0	士林一號井	地調所
tb	凝灰角礫岩		平移斷層	A-40	112.0	118.1		高公局	SS-1		100.0	松山一號井	地調所
	4T L /L L HW	8 8 8	止斷層	BH-1	14.2	90.0		住都局	SS-2	112.0	150.0	松山二號井	地調所
	第L11114段		「 逆斷層	BH-2	30.0	80.0		住都局	TU-1	112.0	280.0	台大一號井	地調所
lk	林口礫石		- 逆斷層(掩蓋)	CM-1	126.5	274.3	景美一號井	經濟部	WK-1	679.0	760.0	五股一號井	地調所
Tn	大南灣層			HC-1	246.0	2317.0	新莊一號井	中油	WK-2	45.0	60.0	五股二號井	地調所
Kc	桂竹林層			KT-1	499.0	520.0	關渡一號井	地調所	WK-3	164.0	165.0	五股三號井	地調所
No	南莊圖			KT-2	197.0	230.0	關渡二號井	地調所	WK-4		100.0	五股四號井	地調所
NU.	11 11 11			KT-3	302.0	320.0	關渡三號井	地調所	WK-5	45.0	50.0	五股五號井	地調所
INK	開花層			LC-1		300.0	蘆洲一號井	地調所	WK-6	125.0	182.0	五股六號井	地調所
St	石底層			LCL-2	51.2	248.6	六張犁二號井	經濟部	WK-7	222.0		五股七號井	地調所
П	大寮層			NP-1	213.9	260.7	新公園一號井	台北市	YH-1	174.2	200.0	永和一號井	地調所
tu	公館凝灰岩			PC-1	58.8	88.0	板橋一號井	地調所	TA-1	157.5	220.0	大安一號井	地調所
Ms	大山岡			PC-2	204.0	300.0	板橋二號井	地調所					
10/2	7 HI A			SC-1	244.9	300.0	三重一號井	地調所					

臺北盆地之構造剖面

臺北盆地松山層底部深度分布圖

台北縣中和市員山路之華陽市場,原為三層多柱少牆鋼筋混凝土的市場建築物,由於2、3層改為住家後砌築了許多磚造外牆與隔間牆,使得建築物成為上剛下軟的結構,加上過大的超載,在耐震上十分不利。在此次地震襲擊下,幾乎大部份一、二樓的支柱折斷,造成12人死亡,數十人受傷的慘劇。

3F

台北市基隆路某汽車公司,門前與建築物中之鋼筋混凝土柱暴裂, 鋼筋扭曲變形。

5F

台北市復興南路一段某大廈,一樓剪力牆腳及牆邊構材部份被壓碎,鋼筋暴露且扭曲變形,牆面呈斜向之剪力龜裂,一、二樓間之混凝土樓板破裂並下陷。

台北市二棟大廈因棟距過近且振動頻率不相同,造成頂樓碰撞受損,5月20 日花蓮地震受損後修補的位置再次損壞。

13F

台北市基隆路一段某大廈外牆破壞情形,該大樓自9樓以下電梯間大樑、樓 梯間牆壁,大樓外牆均發生龜裂,部份樑柱牆壁龜裂處之水管斷裂;8樓之 牆壁呈斜向之剪力破壞。

1986/11/15

M_L=6.8

1~5F

忠孝大橋 《 陽明山瓦斯 西安街 14F-裕台大樓* 13F-惠寶大樓* 12F-富貴大樓(必勝客)*

1986/11/15 M_L=6.8

921地震 松山區 Sungshan area

921地震 新莊區

Hsinchung area

Distribution of the collapsed buildings due to the 1999 Chi-Chi earthquake

臺北盆地之密集微地動量測 (microtremor survey point)

Strong motion station : 69

500 stations

Interval ~ 1 km

臺北盆地主頻分布圖

Dominant frequency contour in the Taipei basin area, result from the H/V ratio of dense microtremor survey

H/V spectral ratio contours at 0.5 and 2.0 Hz.

H/V spectral ratio contour at 0.5 Hz.

Sungshan Formation Bottom --- Taipei Basin

修正建築法規 Modified Building Code (1989)

1989版之建築技術規則考 慮台北盆地之盆地效應, 故特別規定台北盆地之震 區係數。

2011.1修訂後公告之臺北盆地設計地震微分區圖

Microzonation Map of Taipei Basin in the Building Code Modified on 2011.

盆地效應

謝謝!